scholarly journals Visual Responses of Neurons in the Middle Temporal Area of New World Monkeys after Lesions of Striate Cortex

2000 ◽  
Vol 20 (14) ◽  
pp. 5552-5563 ◽  
Author(s):  
Marcello G. P. Rosa ◽  
Rowan Tweedale ◽  
Guy N. Elston
2011 ◽  
Vol 589 (23) ◽  
pp. 5741-5758 ◽  
Author(s):  
Selina S. Solomon ◽  
Chris Tailby ◽  
Saba Gharaei ◽  
Aaron J. Camp ◽  
James A. Bourne ◽  
...  

2017 ◽  
Author(s):  
Tristan A. Chaplin ◽  
Benjamin J. Allitt ◽  
Maureen A. Hagan ◽  
Nicholas S. Price ◽  
Ramesh Rajan ◽  
...  

AbstractNeurons in the Middle Temporal area (MT) of the primate cerebral cortex respond to moving visual stimuli. The sensitivity of MT neurons to motion signals can be characterized by using random-dot stimuli, in which the strength of the motion signal is manipulated by adding different levels of noise (elements that move in random directions). In macaques, this has allowed the calculation of “neurometric” thresholds. We characterized the responses of MT neurons in sufentanil/nitrous oxide anesthetized marmoset monkeys, a species which has attracted considerable recent interest as an animal model for vision research. We found that MT neurons show a wide range of neurometric thresholds, and that the responses of the most sensitive neurons could account for the behavioral performance of macaques and humans. We also investigated factors that contributed to the wide range of observed thresholds. The difference in firing rate between responses to motion in the preferred and null directions was the most effective predictor of neurometric threshold, whereas the direction tuning bandwidth had no correlation with the threshold. We also showed that it is possible to obtain reliable estimates of neurometric thresholds using stimuli that were not highly optimized for each neuron, as is often necessary when recording from large populations of neurons with different receptive field concurrently, as was the case in this study. These results demonstrate that marmoset MT shows an essential physiological similarity to macaque MT, and suggest that its neurons are capable of representing motion signals that allow for comparable motion-in-noise judgments.New and NoteworthyWe report the activity of neurons in marmoset MT in response to random-dot motion stimuli of varying coherence. The information carried by individual MT neurons was comparable to that of the macaque, and that the maximum firing rates were a strong predictor of sensitivity. Our study provides key information regarding the neural basis of motion perception in the marmoset, a small primate species that is becoming increasingly popular as an experimental model.


2018 ◽  
Vol 9 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Fernanda da C. e C. Faria ◽  
Jorge Batista ◽  
Helder Araújo

Abstract This paper describes a bio-inspired algorithm for motion computation based on V1 (Primary Visual Cortex) andMT (Middle Temporal Area) cells. The behavior of neurons in V1 and MT areas contain significant information to understand the perception of motion. From a computational perspective, the neurons are treated as two dimensional filters to represent the receptive fields of simple cells that compose the complex cells. A modified elaborated Reichardt detector, adding an output exponent before the last stage followed by a re-entry stage of modulating feedback from MT, (reciprocal connections of V1 and MT) in a hierarchical framework, is proposed. The endstopped units, where the receptive fields of cells are surrounded by suppressive regions, are modeled as a divisive operation. MT cells play an important role for integrating and interpreting inputs from earlier-level (V1).We fit a normalization and a pooling to find the most active neurons for motion detection. All steps employed are physiologically inspired processing schemes and need some degree of simplification and abstraction. The results suggest that our proposed algorithm can achieve better performance than recent state-of-the-art bio-inspired approaches for real world images.


Perception ◽  
1988 ◽  
Vol 17 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Peter Wenderoth ◽  
Rohan Bray ◽  
Syren Johnstone

A stationary vertical test grating appears to drift to the left after adaptation to an inducing grating drifting to the right, this being known as the motion aftereffect (MAE). Pattern-specific motion aftereffects (PSMAEs) induced by superimposed pairs of gratings in which the component gratings drift up and down but the observer sees a single coherent plaid drifting to the right have been investigated. Two experiments are reported in which it is demonstrated that the PSMAE is tuned more to the motion of the pattern than to the orientation and direction of motion of the component gratings. However, when subjects adapt to the component gratings in alternation, aftereffect magnitude is dependent upon the individual grating orientations and motion directions. These results can be interpreted in terms of extrastriate contributions to the PSMAE, possibly arising from the middle temporal area, where some cells, unlike those in striate cortex (V1), are tuned to pattern motion rather than to component motion.


Sign in / Sign up

Export Citation Format

Share Document