motion integration
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 12)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 21 (10) ◽  
pp. 13
Author(s):  
Giulia Sedda ◽  
David J. Ostry ◽  
Vittorio Sanguineti ◽  
Silvio P. Sabatini

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hao-Lin Li ◽  
Zhe Ren ◽  
Ming-Lei Xiao ◽  
Jiang-Hao Yu ◽  
Yu-Hui Zheng

Abstract We obtain the complete operator bases at mass dimensions 5, 6, 7, 8, 9 for the low energy effective field theory (LEFT), which parametrize various physics effects between the QCD scale and the electroweak scale. The independence of the operator basis regarding the equation of motion, integration by parts and flavor relations, is guaranteed by our algorithm [1, 2], whose validity for the LEFT with massive fermions involved is proved by a generalization of the amplitude-operator correspondence. At dimension 8 and 9, we list the 35058 (756) and 704584 (3686) operators for three (one) generations of fermions categorized by their baryon and lepton number violations (∆B, ∆L), as these operators are of most phenomenological relevance.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Augusto A Lempel ◽  
Kristina J Nielsen

A central feature of cortical function is hierarchical processing of information. Little is currently known about how cortical processing cascades develop. Here, we investigate the joint development of two nodes of the ferret’s visual motion pathway, primary visual cortex (V1), and higher-level area PSS. In adult animals, motion processing transitions from local to global computations between these areas. We now show that PSS global motion signals emerge a week after the development of V1 and PSS direction selectivity. Crucially, V1 responses to more complex motion stimuli change in parallel, in a manner consistent with supporting increased PSS motion integration. At the same time, these V1 responses depend on feedback from PSS. Our findings suggest that development does not just proceed in parallel in different visual areas, it is coordinated across network nodes. This has important implications for understanding how visual experience and developmental disorders can influence the developing visual system.


2020 ◽  
Vol 2 (11) ◽  
pp. 2000124
Author(s):  
Shuiyuan Wang ◽  
Xiaozhang Chen ◽  
Xiaohe Huang ◽  
David Wei Zhang ◽  
Peng Zhou

Author(s):  
Giacomo Benvenuti ◽  
Sandrine Chemla ◽  
Arjan Boonman ◽  
Laurent Perrinet ◽  
Guillaume S Masson ◽  
...  

ABSTRACTWhat are the neural mechanisms underlying motion integration of translating objects? Visual motion integration is generally conceived of as a feedforward, hierarchical, information processing. However, feedforward models fail to account for many contextual effects revealed using natural moving stimuli. In particular, a translating object evokes a sequence of transient feedforward responses in the primary visual cortex but also propagations of activity through horizontal and feedback pathways. We investigated how these pathways shape the representation of a translating bar in monkey V1. We show that, for long trajectories, spiking activity builds-up hundreds of milliseconds before the bar enters the neurons’ receptive fields. Using VSDI and LFP recordings guided by a phenomenological model of propagation dynamics, we demonstrate that this anticipatory response arises from the interplay between horizontal and feedback networks driving V1 neurons well ahead of their feedforward inputs. This mechanism could subtend several perceptual contextual effects observed with translating objects.HighlightsOur hypothesis is that lateral propagation of activity in V1 contributes to the integration of translating stimuliConsistent with this hypothesis, we find that a translating bar induces anticipatory spiking activity in V1 neurons.A V1 model describes how this anticipation can arise from inter and intra-cortical lateral propagation of activity.The dynamic of VSDi and LFP signals in V1 is consistent with the predictions made by the model.The intra-cortical origin is further confirmed by the fact that a bar moving from the ipsilateral hemifield does not evoke anticipation.Horizontal and feedback input are not only modulatory but can also drive spiking responses in specific contexts.


2019 ◽  
Vol 19 (11) ◽  
pp. 12 ◽  
Author(s):  
Sunwoo Kwon ◽  
Martin Rolfs ◽  
Jude F. Mitchell
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuya Hataji ◽  
Hika Kuroshima ◽  
Kazuo Fujita

Abstract Perceiving motion is a fundamental ability for animals. Primates integrate local 1D motion across orientation and space to compute a rigid 2D motion. It is unknown whether the rule of 2D motion integration is universal within the vertebrate clade; comparative studies of animals with different ecological backgrounds from primates may help answer that question. Here we investigated 2D motion integration in pigeons, using hierarchically structured motion stimuli, namely a barber-pole illusion and plaid motion. The pigeons were trained to report the direction of motion of random dots. When a barber-pole or plaid stimulus was presented, they reported the direction perpendicular to the grating orientation for barber-pole and the vector average of two component gratings for plaid motion. These results demonstrate that pigeons perceive different directions than humans from the same motion stimuli, and suggest that the 2D integrating rules in the primate brain has been elaborated through phylogenetic or ecological factors specific to the clade.


2019 ◽  
Vol 19 (10) ◽  
pp. 167c
Author(s):  
Maximilian P.R. Löhr ◽  
Daniel Schmid ◽  
Heiko Neumann
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document