scholarly journals Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex

2001 ◽  
Vol 21 (8) ◽  
pp. 2699-2710 ◽  
Author(s):  
James T. Porter ◽  
Cary K. Johnson ◽  
Ariel Agmon
2013 ◽  
Vol 110 (10) ◽  
pp. 2378-2392 ◽  
Author(s):  
E. E. Kwegyir-Afful ◽  
H. T. Kyriazi ◽  
D. J. Simons

Feedforward inhibition is a common motif of thalamocortical circuits. Strong engagement of inhibitory neurons by thalamic inputs enhances response differentials between preferred and nonpreferred stimuli. In rat whisker-barrel cortex, robustly driven inhibitory barrel neurons establish a brief epoch during which synchronous or near-synchronous thalamic firing produces larger responses to preferred stimuli, such as high-velocity deflections of the principal whisker in a preferred direction. Present experiments in mice show that barrel neuron responses to preferred vs. nonpreferred stimuli differ less than in rats. In addition, fast-spike units, thought to be inhibitory barrel neurons, fire less robustly to whisker stimuli in mice than in rats. Analyses of real and simulated data indicate that mouse barrel circuitry integrates thalamic inputs over a broad temporal window, and that, as a consequence, responses of barrel neurons are largely similar to those of thalamic neurons. Results are consistent with weaker feedforward inhibition in mouse barrels. Differences in thalamocortical circuitry between mice and rats may reflect mechanical properties of the whiskers themselves.


Tsitologiya ◽  
2018 ◽  
Vol 60 (6) ◽  
pp. 448-454
Author(s):  
E. Yu. Kirichenko ◽  
◽  
P.E. Povilaitite ◽  
A.K. Logvinov ◽  
Yu. G. Kirichenko ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
He J.V. Zheng ◽  
Jesse P. Meagher ◽  
Yogi A. Patel ◽  
Hyungbae Kwon
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafat Damseh ◽  
Yuankang Lu ◽  
Xuecong Lu ◽  
Cong Zhang ◽  
Paul J. Marchand ◽  
...  

AbstractRecent studies suggested that cerebrovascular micro-occlusions, i.e. microstokes, could lead to ischemic tissue infarctions and cognitive deficits. Due to their small size, identifying measurable biomarkers of these microvascular lesions remains a major challenge. This work aims to simulate potential MRI signatures combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). Driving our hypothesis are recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially-oriented, and optical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n = 5) before and after inducing targeted photothrombosis, were analyzed. Computational vascular graphs combined with a 3D Monte-Carlo simulator were used to characterize the magnetic resonance (MR) response, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. We quantified the minimal intravoxel signal loss ratio when applying multiple gradient directions, at varying sequence parameters with and without ASL. With ASL, our results demonstrate a significant difference (p < 0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p < 0.005) using angiograms measured at week 4. Without ASL, no reliable signal change was found. We found that higher ratios, and accordingly improved significance, were achieved at lower magnetic field strengths (e.g., B0 = 3T) and shorter echo time TE (< 16 ms). Our simulations suggest that microstrokes might be characterized through ASL-DWI sequence, providing necessary insights for posterior experimental validations, and ultimately, future translational trials.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

AbstractThe rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. Layer 5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of layer 5a in the development of the barrel cortex remains unclear. Previously, we found that calretinin is dynamically expressed in layer 5a. In this study, we analyzed calretinin KO mice and found that the dendritic complexity and length of layer 5a pyramidal neurons were significantly decreased after calretinin ablation. The membrane excitability and excitatory synaptic transmission of layer 5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, layer 4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Calretinin KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of layer 5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2019 ◽  
Vol 40 (4) ◽  
pp. 808-822 ◽  
Author(s):  
Maximilian Böhm ◽  
David Y Chung ◽  
Carlos A Gómez ◽  
Tao Qin ◽  
Tsubasa Takizawa ◽  
...  

Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.


Sign in / Sign up

Export Citation Format

Share Document