scholarly journals Specific Early and Late Oddball-Evoked Responses in Excitatory and Inhibitory Neurons of Mouse Auditory Cortex

2015 ◽  
Vol 35 (36) ◽  
pp. 12560-12573 ◽  
Author(s):  
I.-W. Chen ◽  
F. Helmchen ◽  
H. Lutcke
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jennifer Resnik ◽  
Daniel B Polley

Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons. Whereas the status of brainstem-evoked potentials did not predict the recovery of sensory responses to surviving nerve fibers, homeostatic adjustments in PV-mediated inhibition during the first days following injury could predict the eventual recovery of cortical sound processing weeks later. These findings underscore the potential importance of self-regulated inhibitory dynamics for the restoration of sensory processing in excitatory neurons following peripheral nerve injuries.


Neuroscience ◽  
2021 ◽  
Vol 453 ◽  
pp. 1-16
Author(s):  
Juliette Royer ◽  
Chloé Huetz ◽  
Florian Occelli ◽  
José-Manuel Cancela ◽  
Jean-Marc Edeline

2021 ◽  
Author(s):  
Sudha Sharma ◽  
Hemant Kumar Srivastava ◽  
Sharba Bandyopadhyay

AbstractSo far, our understanding on the role of the auditory cortex (ACX) in processing visual information has been limited to infragranular layers of the ACX, which have been shown to respond to visual stimulation. Here, we investigate the neurons in supragranular layers of the mouse ACX using 2-photon calcium imaging. Contrary to previous reports, here we show that more than 20% of responding neurons in layer2/3 of the ACX respond to full-field visual stimulation. These responses occur by both excitation and hyperpolarization. The primary ACX (A1) has a greater proportion of visual responses by hyperpolarization compared to excitation likely driven by inhibitory neurons of the infragranular layers of the ACX rather than local layer 2/3 inhibitory neurons. Further, we found that more than 60% of neurons in the layer 2/3 of A1 are multisensory in nature. We also show the presence of multisensory neurons in close proximity to exclusive auditory neurons and that there is a reduction in the noise correlations of the recorded neurons during multisensory presentation. This is evidence in favour of deep and intricate visual influence over auditory processing. The results have strong implications for decoding visual influences over the early auditory cortical regions.Significance statementTo understand, what features of our visual world are processed in the auditory cortex (ACX), understanding response properties of auditory cortical neurons to visual stimuli is important. Here, we show the presence of visual and multisensory responses in the supragranular layers of the ACX. Hyperpolarization to visual stimulation is more commonly observed in the primary ACX. Multisensory stimulation results in suppression of responses compared to unisensory stimulation and an overall decrease in noise correlation in the primary ACX. The close-knit architecture of these neurons with auditory specific neurons suggests the influence of non-auditory stimuli on the auditory processing.


1982 ◽  
Vol 32 (3) ◽  
pp. 421-429 ◽  
Author(s):  
Hirofumi MIYATA ◽  
Saburo KAWAGUCHI ◽  
Akio SAMEJIMA ◽  
Tetsuro YAMAMOTO

Sign in / Sign up

Export Citation Format

Share Document