scholarly journals Cellular Basis for Contrast Gain Control over the Receptive Field Center of Mammalian Retinal Ganglion Cells

2007 ◽  
Vol 27 (10) ◽  
pp. 2636-2645 ◽  
Author(s):  
D. L. Beaudoin ◽  
B. G. Borghuis ◽  
J. B. Demb
1992 ◽  
Vol 8 (5) ◽  
pp. 483-486 ◽  
Author(s):  
Ethan A. Benardete ◽  
Ehud Kaplan ◽  
Bruce W. Knight

AbstractPrimate retinal ganglion cells that project to the magnocellular layers of the lateral geniculate nucleus (M) are much more sensitive to luminance contrast than those ganglion cells projecting to the parvocellular layers (P). We now report that increasing contrast modifies the temporal-frequency response of M cells, but not of P cells. With rising contrast, the M cells' responses to sinusoidal stimuli show an increasing attenuation at low temporal frequencies while the P cells' responses scale uniformly. The characteristic features of M-cell dynamics are well described by a model originally developed for the X and Y cells of the cat, where the hypothesized nonlinear feedback mechanism responsible for this behavior has been termed the contrast gain control (Shapley & Victor, 1978, 1981; Victor, 1987, 1988). These data provide further physiological evidence that the M-cell pathway differs from the P-cell pathway with regard to the functional elements in the retina. Furthermore, the similarity in dynamics between primate M cells and cat X and Y retinal ganglion cells suggests the possibility that P cells, being different from either group, are a primate specialization not found in the retinae of lower mammals.


1999 ◽  
Vol 16 (2) ◽  
pp. 355-368 ◽  
Author(s):  
ETHAN A. BENARDETE ◽  
EHUD KAPLAN

The retinal ganglion cells (RGCs) of the primate form at least two classes—M and P—that differ fundamentally in their functional properties. M cells have temporal-frequency response characteristics distinct from P cells (Benardete et al., 1992; Lee et al., 1994). In this paper, we elaborate on the temporal-frequency responses of M cells and focus in detail on the contrast gain control (Shapley & Victor, 1979a,b). Earlier data showed that the temporal-frequency response of M cells is altered by the level of stimulus contrast (Benardete et al., 1992). Higher contrast shifts the peak of the frequency-response curve to higher temporal frequency and produces a phase advance. In this paper, by fitting the data to a linear filter model, the effect of contrast on the temporal-frequency response is subsumed into a change in a single parameter in the model. Furthermore, the model fits are used to predict the response of M cells to steps of contrast, and these predictions demonstrate the dynamic effect of contrast on the M cells' response. We also present new data concerning the spatial organization of the contrast gain control in the primate and show that the signal that controls the contrast gain must come from a broadly distributed network of small subunits in the surround of the M-cell receptive field.


2011 ◽  
Vol 106 (2) ◽  
pp. 895-904 ◽  
Author(s):  
Christopher L. Koehler ◽  
Nikolay P. Akimov ◽  
René C. Rentería

Development of the mammalian visual system is not complete at birth but continues postnatally well after eye opening. Although numerous studies have revealed changes in the development of the thalamus and visual cortex during this time, less is known about the development of response properties of retinal ganglion cells (RGCs). Here, we mapped functional receptive fields of mouse RGCs using a Gaussian white noise checkerboard stimulus and a multielectrode array to record from retinas at eye opening, 3 days later, and 4 wk after birth, when visual responses are essentially mature. Over this time, the receptive field center size of ON and OFF RGC populations decreased. The average receptive field center size of ON RGCs was larger than that of OFF RGCs at eye opening, but they decreased to the same size in the adult. Firing properties were also immature at eye opening. RGCs had longer latencies, lower frequencies of firing, and lower sensitivity than in the adult. Hence, the dramatic maturation of the visual system during the first weeks of visual experience includes the retina.


1972 ◽  
Vol 43 (1) ◽  
pp. 250-253 ◽  
Author(s):  
Terry L. Hickey ◽  
Ray W. Winters ◽  
Jay G. Pollack

1995 ◽  
Vol 73 (4) ◽  
pp. 1547-1567 ◽  
Author(s):  
D. K. Merwine ◽  
F. R. Amthor ◽  
N. M. Grzywacz

1. The interaction between the center and surround mechanisms of a variety of rabbit retinal ganglion cell classes was examined in extracellular single-unit recordings in an isolated eyecup preparation. Ganglion cell classes studied included on and off brisk sustained and transient, on and off sluggish sustained and transient, on-off and on directionally selective, orientationally selective, and large field units. The surround effects observed were qualitatively similar in all these ganglion cell classes. 2. The average response-versus-contrast functions for stimuli within the ganglion cells' receptive-field centers were relatively linear between threshold and saturation for all ganglion cell classes examined. The major effect of surround stimulation on the center response-versus-contrast function was a reduction in the slope of the linear portion of the curve, rather than a downward, parallel shift of the function. Stimulation of the surround had no systematically significant effect on the contrast threshold for the center spot, and, when it did have a significant effect, it sometimes decreased, rather than increased the magnitude of threshold. 3. Step changes in surround contrast were most effective when they were made simultaneously with step changes in the center; surround inhibition decreased significantly when it preceded stimulation of the center by > 100 ms and was generally ineffective when preceding the center by > 500 ms. The decrease in the inhibitory effect of surround stimulation was a monotonic function of delay between 0 and 500 ms. 4. Stimulation of the surround by step changes in the contrast of a sine-wave grating annulus produced qualitatively similar results to those obtained for pure luminance modulations. This suggests that the surround mechanism observed in these experiments was not due to pure luminance adaptation within the surround. The inhibitory effect of sine-wave gratings in the surround decreased monotonically as a function of spatial frequency. 5. Stimulation with a spot and an annulus that were both entirely within the ganglion cell's excitatory receptive-field center typically yielded nonadditive summation at contrasts whose linear sum of responses were below saturation. The effect of an annulus within the receptive-field center on responses elicited by a central spot quantitatively resembled the inhibition elicited from annuli in the inhibitory surround, after the excitatory center response due to the annulus was taken into account. These results suggest that the inhibiton elicited from the surrounds of the ganglion cells in these experiments extended into their receptive-field centers.(ABSTRACT TRUNCATED AT 400 WORDS)


2011 ◽  
Vol 28 (5) ◽  
pp. 403-417 ◽  
Author(s):  
WALTER F. HEINE ◽  
CHRISTOPHER L. PASSAGLIA

AbstractThe rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON–OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.


Sign in / Sign up

Export Citation Format

Share Document