scholarly journals Septal Neurons in Barrel Cortex Derive Their Receptive Field Input from the Lemniscal Pathway

2009 ◽  
Vol 29 (13) ◽  
pp. 4089-4095 ◽  
Author(s):  
T. Furuta ◽  
T. Kaneko ◽  
M. Deschenes
2009 ◽  
Vol 65 ◽  
pp. S177
Author(s):  
Takahiro Furuta ◽  
Takeshi Kaneko ◽  
Martin Deschenes

2010 ◽  
Vol 104 (6) ◽  
pp. 3105-3112 ◽  
Author(s):  
Marie E. Hemelt ◽  
Ernest E. Kwegyir-Afful ◽  
Randy M. Bruno ◽  
Daniel J. Simons ◽  
Asaf Keller

Each region along the rat mystacial vibrissa pathway contains neurons that respond preferentially to vibrissa deflections in a particular direction, a property called angular tuning. Angular tuning is normally defined using responses to deflections of the principal vibrissa, which evokes the largest response magnitude. However, neurons in most brain regions respond to multiple vibrissae and do not necessarily respond to different vibrissae with the same angular tuning. We tested the consistency of angular tuning across the receptive field in several stations along the vibrissa-to-cortex pathway: primary somatosensory (barrel) cortex, ventroposterior medial nucleus of the thalamus (VPM), second somatosensory cortex, and superior colliculus. We found that when averaged across the population, neurons in all of these regions have low (superior colliculus and second somatosensory cortex) or statistically insignificant (barrel cortex and VPM) angular tuning consistencies across vibrissae. Nevertheless, in each region there are a small number of neurons that display consistent angular tuning for at least some vibrissae. We discuss the relevance of these findings for the transformation of inputs along the vibrissa trigeminal pathway and for the detection of sensory cues by whisking animals.


1998 ◽  
Vol 80 (6) ◽  
pp. 3261-3271 ◽  
Author(s):  
Wei Huang ◽  
Michael Armstrong-James ◽  
V. Rema ◽  
Mathew E. Diamond ◽  
Ford F. Ebner

Huang, Wei, Michael Armstrong-James, V. Rema, Mathew E. Diamond, and Ford F. Ebner. Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex. J. Neurophysiol. 80: 3261–3271, 1998. In mature rat primary somatic sensory cortical area (SI) barrel field cortex, the thalamic-recipient granular layer IV neurons project especially densely to layers I, II, III, and IV. A prior study showed that cells in the supragranular layers are the fastest to change their response properties to novel changes in sensory inputs. Here we examine the effect of removing supragranular circuitry on the responsiveness and synaptic plasticity of cells in the remaining layers. To remove the layer II + III (supragranular) neurons from the circuitry of barrel field cortex, N-methyl-d-aspartate (NMDA) was applied to the exposed dura over the barrel cortex, which destroys those neurons by excitotoxicity without detectable damage to blood vessels or axons of passage. Fifteen days after NMDA treatment, the first responsive cells encountered were 400–430 μm below the pial surface. In separate cases triphenyltetrazolium chloride (TTC), a vital dye taken up by living cells, was absent from the lesion area. Cytochrome oxidase (CO) activity was absent in the first few tangential sections through the barrel field in all cases before arriving at the CO-dense barrel domains. These findings indicate that the lesions were quite consistent from animal to animal. Controls consisted of applying vehicle without NMDA under similar conditions. Responses of D2 barrel cells were assessed for spontaneous activity and level of response to stimulation of the principal D2 whisker and four surround whiskers D1, D3, C2, and E2. In two additional groups of animals treated in the same way, sensory plasticity was assessed by trimming all whiskers except D2 and either D1 or D3 (called Dpaired) for 7 days before recording cortical responses. Such whisker pairing normally potentiates D2 barrel cell responses to stimulation of the two intact whiskers (D2 + Dpaired). After NMDA lesions, cortical cells still responded to all whiskers tested. Cells in lesioned cortex showed reduced response amplitude compared with sham-operated controls to all D-row whiskers. In-arc surround whisker (C2 or E2) responses were normal. Spontaneous activity did not change significantly in any remaining layer at the time tested. Modal latencies to stimulation of principal D2 or surround D1 or D3 whiskers showed no significant change after lesioning. These findings indicate that there is a reasonable preservation of the response properties of layer IV, V, VI neurons after removal of layer II–III neurons in this way. Whisker pairing plasticity in layer IV–VI D2 barrel column neurons occurred in both lesioned and sham animals but was reduced significantly in lesioned animals compared with controls. The response bias generated by whisker trimming (Dpaired/Dcut + Dpaired ratio) was less pronounced in NMDA-lesioned than sham-lesioned animals. Proportionately fewer neurons in layer IV (52 vs. 64%) and in the infragranular layers (55 vs. 68%) exhibited a clear response bias to paired whiskers. We conclude that receptive-field plasticity can occur in layers IV–VI of barrel cortex in the absence of the supragranular layer circuitry. However, layer I–III circuitry does play a role in normal receptive-field generation and is required for the full expression of whisker pairing plasticity in granular and infragranular layer cells.


2009 ◽  
Vol 102 (1) ◽  
pp. 437-450 ◽  
Author(s):  
Akio Hirata ◽  
Juan Aguilar ◽  
Manuel A. Castro-Alamancos

Influence of subcortical inhibition on barrel cortex receptive fields. By the time neural responses driven by vibrissa stimuli reach the barrel cortex, they have undergone significant spatial and temporal transformations within subcortical relays. A major regulator of these transformations is thought to be subcortical GABA-mediated inhibition, but the actual degree of this influence is unknown. We used disinhibition produced by GABA receptor antagonists to unmask the excitatory sensory responses that are normally suppressed by inhibition in the main subcortical sensory relays to barrel cortex; principal trigeminal (Pr5) and primary thalamic (VPM) nuclei. We found that, within subcortical relays, inhibition only slightly suppresses short-latency receptive field responses, but robustly suppresses long-latency center and surround receptive field responses. However, the long-latency subcortical effects of inhibition are mostly not reflected in the barrel cortex. The most robust effect of subcortical inhibition on barrel cortex responses is to transiently suppress the receptive field responses of high-frequency sensory stimuli. This transient adaptation caused by subcortical inhibition recovers within a few stimuli and gives way to a steady-state adaptation that is independent of subcortical inhibition.


Tsitologiya ◽  
2018 ◽  
Vol 60 (6) ◽  
pp. 448-454
Author(s):  
E. Yu. Kirichenko ◽  
◽  
P.E. Povilaitite ◽  
A.K. Logvinov ◽  
Yu. G. Kirichenko ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document