physiological models
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 54)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 18 (1) ◽  
pp. e1010171
Author(s):  
Judith Grau-Expósito ◽  
David Perea ◽  
Marina Suppi ◽  
Núria Massana ◽  
Ander Vergara ◽  
...  

The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2.


Blood ◽  
2021 ◽  
Author(s):  
Courtnee A Clough ◽  
Joseph Pangallo ◽  
Martina Sarchi ◽  
Janine O Ilagan ◽  
Khrystyna North ◽  
...  

SF3B1 splicing factor mutations are near-universally found in myelodysplastic syndromes (MDS) with ring sideroblasts, a clonal hematopoietic disorder characterized by abnormal erythroid cells with iron-loaded mitochondria. Despite this remarkably strong genotype-to-phenotype correlation, the mechanism by which mutant SF3B1 dysregulates iron metabolism to cause ring sideroblasts (RS) remains unclear due to an absence of physiological models of RS formation. Here, we report an induced pluripotent stem cell (iPSC) model of SF3B1-mutant MDS that for the first time recapitulates robust RS formation during in vitro erythroid differentiation. Mutant SF3B1 induces mis-splicing of ~100 genes throughout erythroid differentiation, including proposed RS driver genes TMEM14C, PPOX, and ABCB7. All three mis-splicing events reduce protein expression, notably occurring via 5' UTR alteration and reduced translation efficiency for TMEM14C. Functional rescue of TMEM14C and ABCB7, but not the non-rate-limiting enzyme PPOX, markedly decreased RS, and their combined rescue nearly abolished RS formation. Our study demonstrates that coordinated mis-splicing of mitochondrial transporters TMEM14C and ABCB7 by mutant SF3B1 sequesters iron in mitochondria, causing ring sideroblast formation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. W. S. McCullough ◽  
P. V. Coveney

AbstractAn arteriovenous fistula, created by artificially connecting segments of a patient’s vasculature, is the preferred way to gain access to the bloodstream for kidney dialysis. The increasing power and availability of supercomputing infrastructure means that it is becoming more realistic to use simulations to help identify the best type and location of a fistula for a specific patient. We describe a 3D fistula model that uses the lattice Boltzmann method to simultaneously resolve blood flow in patient-specific arteries and veins. The simulations conducted here, comprising vasculatures of the whole forearm, demonstrate qualified validation against clinical data. Ongoing research to further encompass complex biophysics on realistic time scales will permit the use of human-scale physiological models for basic and clinical medicine.


2021 ◽  
Author(s):  
◽  
Kristina Heidy Kikillus

<p>Worldwide, invasive species are associated with severe ecological and economic impacts. As a group, reptiles are very successful invaders and in some areas where they have established they are responsible for the decline of native fauna and economic disruptions, whilst also posing a threat to human health. Due to its biogeographical isolation and unique evolutionary history, New Zealand is highly susceptible to invasive species. Importation of reptiles into New Zealand is illegal, however over a dozen species of exotic reptile are legally present in captivity and their risk of establishment is unknown. This study investigates their establishment potential and possible impacts by considering 1) the amount of trade and propagule pressure of species, 2) the degree of climate match between their native range and New Zealand, 3) areas that may be suitable for establishment based on physiological models of incubation and development, 4) their ability to transfer pathogens to native fauna and humans, and 5) overall establishment risk. The red-eared slider (Trachemys scripta elegans; RES) is the most common and easily obtained exotic reptile pet in New Zealand, with over 800 sales per annum. The RES is also the species most regularly released into the wild. Climate matching models in this study were developed to minimise false-negative predictions, to generate a suitability score irrespective of the prevalence of species records (allowing species to be easily compared to one another), and incorporated a weighted multimodel average prediction based on the relative importance of climatic variables to each species. These correlative models indicated that the blotched blue-tongue skink (Tiliqua nigrolutea) had the highest degree of climate match with parts of New Zealand, while the common blue-tongue skink (T. scincoides) had the highest proportion of land area predicted to be suitable for establishment. The other 10 species generally had both low climate match scores and limited areas within New Zealand predicted to be suitable. Mechanistic models focus upon environmental influences on physiological processes of a species, such as development and growth. Degree-day models, combined with soil measurements in potential reptile nesting sites in New Zealand, were utilised to determine if environmental conditions were suitable for the successful reproduction of oviparous exotic reptiles. These models predicted that the New Zealand environment meets the minimum thermal requirements for the incubation of eggs of RES, snake-neck turtles (Chelodina longicollis), and Reeves turtles (Chinemys reevesii). While prevalence of Salmonella in exotic reptiles is higher than that of native reptiles, it is considerably lower than that of exotic reptiles overseas. All serovars identified in this study had been previously reported both in humans and reptiles in New Zealand. The overall risk assessment for 12 species of exotic reptile kept in captivity in New Zealand indicates that blotched blue-tongue skinks and RES pose the highest establishment risk. Blotched blue-tongue skinks are allegedly only present in zoos. Therefore, based on propagule pressure, RES pose the highest establishment risk and efforts should focus on minimising release events and removing feral individuals from the New Zealand environment. In summary, at least eight species of exotic reptile legally traded within New Zealand are predicted to be capable of surviving in a portion of the New Zealand environment and at least three species have the potential to successfully breed in warmer microclimates. However, further research involving climatic tolerances and breeding potential (i.e., soil moisture content, juvenile survival, sex ratio, and predicted climate change) is recommended. Public education and possible regulations imposed on the New Zealand exotic reptile trade may prevent introductions of these species into the local environment and still allow selected species to be enjoyed by the New Zealand public. The methods developed in this study may be easily applied to other species and other geographic regions, allowing investigation into the establishment risk of alien species. This may help guide control and management efforts and help stem the tide of the growing problem of invasive species.</p>


2021 ◽  
Author(s):  
◽  
Kristina Heidy Kikillus

<p>Worldwide, invasive species are associated with severe ecological and economic impacts. As a group, reptiles are very successful invaders and in some areas where they have established they are responsible for the decline of native fauna and economic disruptions, whilst also posing a threat to human health. Due to its biogeographical isolation and unique evolutionary history, New Zealand is highly susceptible to invasive species. Importation of reptiles into New Zealand is illegal, however over a dozen species of exotic reptile are legally present in captivity and their risk of establishment is unknown. This study investigates their establishment potential and possible impacts by considering 1) the amount of trade and propagule pressure of species, 2) the degree of climate match between their native range and New Zealand, 3) areas that may be suitable for establishment based on physiological models of incubation and development, 4) their ability to transfer pathogens to native fauna and humans, and 5) overall establishment risk. The red-eared slider (Trachemys scripta elegans; RES) is the most common and easily obtained exotic reptile pet in New Zealand, with over 800 sales per annum. The RES is also the species most regularly released into the wild. Climate matching models in this study were developed to minimise false-negative predictions, to generate a suitability score irrespective of the prevalence of species records (allowing species to be easily compared to one another), and incorporated a weighted multimodel average prediction based on the relative importance of climatic variables to each species. These correlative models indicated that the blotched blue-tongue skink (Tiliqua nigrolutea) had the highest degree of climate match with parts of New Zealand, while the common blue-tongue skink (T. scincoides) had the highest proportion of land area predicted to be suitable for establishment. The other 10 species generally had both low climate match scores and limited areas within New Zealand predicted to be suitable. Mechanistic models focus upon environmental influences on physiological processes of a species, such as development and growth. Degree-day models, combined with soil measurements in potential reptile nesting sites in New Zealand, were utilised to determine if environmental conditions were suitable for the successful reproduction of oviparous exotic reptiles. These models predicted that the New Zealand environment meets the minimum thermal requirements for the incubation of eggs of RES, snake-neck turtles (Chelodina longicollis), and Reeves turtles (Chinemys reevesii). While prevalence of Salmonella in exotic reptiles is higher than that of native reptiles, it is considerably lower than that of exotic reptiles overseas. All serovars identified in this study had been previously reported both in humans and reptiles in New Zealand. The overall risk assessment for 12 species of exotic reptile kept in captivity in New Zealand indicates that blotched blue-tongue skinks and RES pose the highest establishment risk. Blotched blue-tongue skinks are allegedly only present in zoos. Therefore, based on propagule pressure, RES pose the highest establishment risk and efforts should focus on minimising release events and removing feral individuals from the New Zealand environment. In summary, at least eight species of exotic reptile legally traded within New Zealand are predicted to be capable of surviving in a portion of the New Zealand environment and at least three species have the potential to successfully breed in warmer microclimates. However, further research involving climatic tolerances and breeding potential (i.e., soil moisture content, juvenile survival, sex ratio, and predicted climate change) is recommended. Public education and possible regulations imposed on the New Zealand exotic reptile trade may prevent introductions of these species into the local environment and still allow selected species to be enjoyed by the New Zealand public. The methods developed in this study may be easily applied to other species and other geographic regions, allowing investigation into the establishment risk of alien species. This may help guide control and management efforts and help stem the tide of the growing problem of invasive species.</p>


Open Heart ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. e001746
Author(s):  
Ivan Corazza ◽  
Margherita Zecchi ◽  
Romano Zannoli

Nowadays, technological progress has equipped clinicians with new useful devices for the collection, analysis and presentation of data. As a consequence, many diseases and pathological conditions have been studied in a more detailed way, sometimes with remarkable results. In fact, they are not always validated by the old physiological models. In this respect, we present the case of low gradient severe aortic stenosis, a condition characterised by a small aortic valve area and a low-pressure gradient. According to the mathematical and physical assumptions these readings are contradictory whereas the Doppler-echocardiography shows clearly the existence of such a situation. In this work, we have described the physiological base of this phenomenon and discussed the limitations of the technology used. In this work, we are going to analyse some conditions commonly observed in daily clinical practice in order to prompt a critical outlook in both clinicians and technicians about the instrumentations used and the methods applied.


2021 ◽  
Author(s):  
Maxim Ryzhii ◽  
Elena Ryzhii

AbstractSimplified nonlinear models of biological cells are widely used in computational electrophysiology. The models reproduce qualitatively many of the characteristics of various organs, such as the heart, brain and intestine. In contrast to complex cellular ion-channel models, the simplified models usually contain a small number of variables and parameters which facilitates nonlinear analysis and reduces computational load. In this paper, we consider pacemaking variants of the Aliev-Panfilov and Corrado two-variable excitable cell models. We conducted numerical simulation study of these models, and investigated main nonlinear dynamic features of both isolated cells and 1D coupled pacemaker-excitable systems. Simulations of 2D sinoatrial node and 3D intestine tissue as application examples of combined pacemaker-excitable systems demonstrated results similar to obtained previously. The uniform formulation for the conventional excitable cell models and proposed pacemaker models allows a convenient and easy implementation for the construction of personalized physiological models, inverse tissue modeling, and development of real-time simulation systems for various organs that contain both pacemaker and excitable cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pablo Sabat ◽  
Seth D. Newsome ◽  
Stephanie Pinochet ◽  
Roberto Nespolo ◽  
Juan Carlos Sanchez-Hernandez ◽  
...  

Understanding physiological traits and ecological conditions that influence a species reliance on metabolic water is critical to creating accurate physiological models that can assess their ability to adapt to environmental perturbations (e.g., drought) that impact water availability. However, relatively few studies have examined variation in the sources of water animals use to maintain water balance, and even fewer have focused on the role of metabolic water. A key reason is methodological limitations. Here, we applied a new method that measures the triple oxygen isotopic composition of a single blood sample to estimate the contribution of metabolic water to the body water pool of three passerine species. This approach relies on Δ'17O, defined as the residual from the tight linear correlation that naturally exists between δ17O and δ18O values. Importantly, Δ'17O is relatively insensitive to key fractionation processes, such as Rayleigh distillation in the water cycle that have hindered previous isotope-based assessments of animal water balance. We evaluated the effects of changes in metabolic rate and water intake on Δ'17O values of captive rufous-collared sparrows (Zonotrichia capensis) and two invertivorous passerine species in the genus Cinclodes from the field. As predicted, colder acclimation temperatures induced increases in metabolic rate, decreases in water intake, and increases in the contribution of metabolic water to the body water pool of Z. capensis, causing a consistent change in Δ'17O. Measurement of Δ'17O also provides an estimate of the δ18O composition of ingested pre-formed (drinking/food) water. Estimated δ18O values of drinking/food water for captive Z. capensis were ~ −11‰, which is consistent with that of tap water in Santiago, Chile. In contrast, δ18O values of drinking/food water ingested by wild-caught Cinclodes were similar to that of seawater, which is consistent with their reliance on marine resources. Our results confirm the utility of this method for quantifying the relative contribution of metabolic versus pre-formed drinking/food water to the body water pool in birds.


Sign in / Sign up

Export Citation Format

Share Document