scholarly journals Leaching and Releasing Characteristics and Regularities of Sb and As from Antimony Mining Waste Rocks

2019 ◽  
Vol 28 (5) ◽  
pp. 4017-4025 ◽  
Author(s):  
Yao Zhang ◽  
Bozhi Ren ◽  
Andrew Hursthouse ◽  
Renjian Deng ◽  
Baolin Hou
Keyword(s):  
2019 ◽  
Vol 5 (10) ◽  
pp. 153-158
Author(s):  
E.I. Khabarova ◽  
◽  
E.S. Zarubina ◽  
Keyword(s):  

2019 ◽  
Vol 12 ◽  
pp. 114-126 ◽  
Author(s):  
V.I. Usikov ◽  
◽  
L.N. Lipina ◽  
A.V. Alexandrov ◽  
S.I. Korneeva ◽  
...  

2018 ◽  
Vol 8 ◽  
pp. 200-207 ◽  
Author(s):  
N.N. Melnikov ◽  
◽  
V.M. Busyrev ◽  
O.E. Churkin ◽  
◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


Author(s):  
Gustavo Ramos Dantés dos Reis ◽  
José Carlos de Oliveira ◽  
Marcus Vinicius Abrahão Porto Silva

2021 ◽  
Vol 771 ◽  
pp. 138482
Author(s):  
Daiane R.S. Cruz ◽  
Iris A.A. Silva ◽  
Rhayza V.M. Oliveira ◽  
Marco A.P. Buzinaro ◽  
Benilde F.O. Costa ◽  
...  

2014 ◽  
Vol 976 ◽  
pp. 202-206 ◽  
Author(s):  
Javier Flores Badillo ◽  
Juan Hernández Ávila ◽  
Francisco Patiño Cardona ◽  
Norma Yacelit Trápala Pineda ◽  
José Abacú Ostos Santos

In this paper we present the production of alternative industrial materials from the mining waste in the form of tailings, this study was made with the tailings of Dos Carlos, establishing 4 sampling zones, dividing them into three strata in the bottom, middle and top. The sampling method used is quartering, to homogenize the material and anticipate the possible use of it as a building material, having for this purpose 12 ceramic mixtures for subsequent treatment. Chemical composition was determined as 70.43% SiO2, 7.032% Al2O3, 2.69% Fe2O3, 0.46% MnO2, 3.98% K2O, 3.34% CaO, 2.50% Na2O, 56 grams per tonne of Ag y 0.6 grams per tonne of Au. In the mineralogical characterization the tailings presents silica, albite, berlinite, orthoclase and potassium jarosite as the main mineral phases, among other mineral phases in lesser concentration such as gypsum, calcite, anorthoclase, pyrite, sphalerite and galena. The determinations of the tailing material granulometry in the range of 60% in a size less than 270 mesh (53 μm). Afterwards, the alternative industrial materials were produced by using the tailings and heavy clay in order to give the composite a good green strength and plasticity during development, but above all to give it a compressive strength similar or higher than that of products derived from conventional processes. Keywords: Tailings, green strength, compressive strength, plasticity, heavy clays, alternative industrial materials.


2013 ◽  
Vol 295-298 ◽  
pp. 1372-1375 ◽  
Author(s):  
Guang Wei Liu ◽  
Run Cai Bai

The main formation condition and harmfulness of the acidic mining waste water's were analyzed in this paper. The treatment technology of the acid mine drainage's was briefly introduced. The research development of acid mine drainage was summarized in recent years. It was the fact that developing the efficient, cheap, safe and easy treatment technology of acid mine should be necessary and inevitably and some success management experiences of acidic waste water were applied in acidic mining wastewater.


Sign in / Sign up

Export Citation Format

Share Document