8. Important Bird Areas As Wintering Sites For Boreal Migrants In The Tropical Andes

2019 ◽  
pp. 95-106
Keyword(s):  
Ecography ◽  
2013 ◽  
Vol 36 (11) ◽  
pp. 1247-1253 ◽  
Author(s):  
Gunnar Brehm ◽  
Patrick Strutzenberger ◽  
Konrad Fiedler

Ecography ◽  
2018 ◽  
Vol 41 (9) ◽  
pp. 1497-1506 ◽  
Author(s):  
Marta Quitián ◽  
Vinicio Santillán ◽  
Carlos Iván Espinosa ◽  
Jürgen Homeier ◽  
Katrin Böhning-Gaese ◽  
...  

2021 ◽  
Author(s):  
Sebastián Páez-Bimos ◽  
Veerle Vanacker ◽  
Marcos Villacis ◽  
Marlon Calispa ◽  
Oscar Morales ◽  
...  

<p>The high tropical Andes ecosystem, known as páramo, provides important hydrological services to densely populated areas in the Andean region. In order to manage these services sustainably, it is crucial to understand the biotic and abiotic processes that control both water quality and fluxes. Recent research in the páramo highlights a knowledge gap regarding the role played by soil-vegetation interactions in controlling soil-water processes and resulting water and solute fluxes.</p><p>Here, we determine the hydrological and geochemical fluxes in four soil profiles in the páramo of the Antisana´s water conservation area in northern Ecuador. Water fluxes were measured biweekly with field fluxmeters in the hydrological year Apr/2019- Mar/2020 under two contrasting vegetation types: tussock-like grass (TU) and cushion-forming plants (CU). Soil solution was collected in parallel with wick samplers and suction caps for assessing the concentrations of dissolved cations, anions and organic carbon (DOC). In addition, soil moisture was measured continuously in the upper meter of the soil profile, i.e. first three horizons (A, 2A and 2BC), using water content reflectometers. The vertical water flux in the upper meter of each soil profile was simulated using the 1D HYDRUS model. We carried out a Sobol analysis to identify sensitive soil hydraulic parameters. We then derived water fluxes by inverse modeling, based on the measured soil moisture. We validated the calculated water fluxes using the fluxmeter data. Solute fluxes were estimated by combining the water fluxes and the soil solution compositions.</p><p>Our preliminary results suggest that water fluxes and DOC concentration vary under different vegetation types. The fluxmeter data from the 2A horizon indicates that the cumulative water flux under TU (2.8 - 5.7 l) was larger than under CU (0.8 – 1.1 l) during the dry season (Aug-Sep and Dec-Jan). However, the opposite trend was observed in the wet season for maximum water fluxes. Moreover, the DOC concentration in the uppermost horizon was higher under CU (47.3 ±2.2 mg l<sup>-1</sup>) than under TU (3.1 ±0.2 mg l<sup>-1</sup>) vegetation during the monitoring period. We associate the water and solute responses under different vegetation types to the contrasting soil hydro-physical and chemical properties (e.g., saturated hydraulic conductivity and organic carbon content) in the uppermost soil horizon. Our study illustrates the existence of a spatial association between vegetation types, water fluxes and solute concentrations in Antisana´s water conservation area. By modelling the hydrological balance of the upper meter of the soil mantle, the water and solute fluxes will be estimated for soils with different vegetation cover.</p><p> </p>


2009 ◽  
Vol 46 (5) ◽  
pp. 1115-1121 ◽  
Author(s):  
Olivier Dangles ◽  
Verónica Mesías ◽  
Verónica Crespo-Perez ◽  
Jean-François Silvain

2016 ◽  
Vol 6 (7) ◽  
pp. 1901-1913 ◽  
Author(s):  
Fabio Leonardo Meza-Joya ◽  
Mauricio Torres

2016 ◽  
Vol 19 (6) ◽  
pp. 548-560 ◽  
Author(s):  
E. W. Basham ◽  
P. González del Pliego ◽  
A. R. Acosta-Galvis ◽  
P. Woodcock ◽  
C. A. Medina Uribe ◽  
...  

Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
María Cazorla ◽  
René Parra ◽  
Edgar Herrera ◽  
Francisco Raimundo da Silva

In this study, we characterize atmospheric ozone over the tropical Andes in the boundary layer, the free troposphere, and the stratosphere; we quantify each contribution to total column ozone, and we evaluate the performance of the multi-sensor reanalysis (MSR2) in the region. Thus, we present data taken in Ecuador and Peru (2014–2019). The contribution from the surface was determined by integrating ozone concentrations measured in Quito and Cuenca (Ecuador) up to boundary layer height. In addition, tropospheric and stratospheric column ozone were quantified from ozone soundings (38) launched from Quito during the study time period. Profiles were compared against soundings at Natal (SHADOZ network) for being the closest observational reference with sufficient data in 2014–2019. Data were also compared against stratospheric mixing ratios from the Aura Microwave Limb Sounder (Aura MLS). Findings demonstrate that the stratospheric component of total column ozone over the Andes (225.2 ± 8.9 Dobson Units [DU]) is at similar levels as those observed at Natal (223.3 ± 8.6 DU), and observations are comparable to Aura MLS data. In contrast, the tropospheric contribution is lower over the Andes (20.2 ± 4.3 DU) when compared to Natal (35.4 ± 6.4 DU) due to a less deep and cleaner troposphere. From sounding extrapolation of Quito profiles down to sea level, we determined that altitude deducts about 5–7 DU from the total column, which coincides with a 3%–4% overestimation of the MSR2 over Quito and Marcapomacocha (Peru). In addition, when MSR2 data are compared along a transect that crosses from the Amazon over Quito, the Ecuadorian coast side, and into the Pacific, observations are not significantly different among the three first locations. Results point to coarse reanalysis resolution not being suitable to resolve the formidable altitude transition imposed by the Andes mountain chain. This work advances our knowledge of atmospheric ozone over the study region and provides a robust time series of upper air measurements for future evaluations of satellite and reanalysis products.


Sign in / Sign up

Export Citation Format

Share Document