Absolute Judgment of Musical Interval Width

2014 ◽  
Vol 32 (2) ◽  
pp. 186-200 ◽  
Author(s):  
Christopher Aruffo ◽  
Robert L. Goldstone ◽  
David J. D. Earn

When a musical tone is sounded, most listeners are unable to identify its pitch by name. Those listeners who can identify pitches are said to have absolute pitch perception (AP). A limited subset of musicians possesses AP, and it has been debated whether musicians’ AP interferes with their ability to perceive tonal relationships between pitches, or relative pitch (RP). The present study tested musicians’ discrimination of relative pitch categories, or intervals, by placing absolute pitch values in conflict with relative pitch categories. AP listeners perceived intervals categorically, and their judgments were not affected by absolute pitch values. These results indicate that AP listeners do not infer interval identities from the absolute values between tones, and that RP categories are salient musical concepts in both RP and AP musicianship.

NeuroImage ◽  
2019 ◽  
Vol 200 ◽  
pp. 132-141 ◽  
Author(s):  
Simon Leipold ◽  
Marielle Greber ◽  
Silvano Sele ◽  
Lutz Jäncke

2019 ◽  
Author(s):  
Simon Leipold ◽  
Marielle Greber ◽  
Silvano Sele ◽  
Lutz Jäncke

AbstractPitch is a fundamental attribute of sounds and yet is not perceived equally by all humans. Absolute pitch (AP) musicians perceive, recognize, and name pitches in absolute terms, whereas relative pitch (RP) musicians, representing the large majority of musicians, perceive pitches in relation to other pitches. In this study, we used electroencephalography (EEG) to investigate the neural representations underlying tone listening and tone labeling in a large sample of musicians (n = 105). Participants performed a pitch processing task with a listening and a labeling condition during EEG acquisition. Using a brain-decoding framework, we tested a prediction derived from both theoretical and empirical accounts of AP, namely that the representational similarity of listening and labeling is higher in AP musicians than in RP musicians. Consistent with the prediction, time-resolved single-trial EEG decoding revealed a higher representational similarity in AP musicians during late stages of pitch perception. Time-frequency-resolved EEG decoding further showed that the higher representational similarity was present in oscillations in the theta and beta frequency bands. Supplemental univariate analyses were less sensitive in detecting subtle group differences in the frequency domain. Taken together, the results suggest differences between AP and RP musicians in late pitch processing stages associated with cognition, rather than in early processing stages associated with perception.


1991 ◽  
Vol 9 (1) ◽  
pp. 105-119 ◽  
Author(s):  
André-Pierre Benguerel ◽  
Carol Westdal

When identifying musical intervals, most musicians appear to use only one strategy: they directly evaluate the musical interval between two notes (relative-pitch strategy). Musicians with absolute pitch (AP) seem to have two strategies available for identifying intervals: they can either use the relative-pitch strategy, or they can first identify the two pitches and then infer the musical interval between them (AP strategy). This study investigates the perception of sequential musical intervals by two groups of musicians, one group with AP and the other without AP. Most subjects in either group were able to name standard sequential musical intervals based on the equal-tempered scale accurately. Most subjects in the AP group were able to name notes of the equal-tempered scale accurately and consistently, whereas subjects without AP were not. Subjects with AP identified, with varying degrees of accuracy and consistency, single notes spaced in 20-cent increments over a 9.4- semitone range, using the standard musical note names. In the main experiment, subjects identified sequential musical intervals ranging in 20- cent steps from 260 to 540 cents, using the standard musical interval names. On the basis of their identification errors, subjects, both with and without AP, appeared to identify the intervals using the RP strategy rather than the AP strategy. It seems that musicians with AP do not use this ability in the identification of sequential musical intervals, relying instead on their sense of relative pitch.


1878 ◽  
Vol 9 ◽  
pp. 582-588
Author(s):  
Fleeming Jenkin ◽  
J. A. Ewing

In this paper the authors gave a preliminary account of experiments made with the help of the phonograph exhibited at the last meeting. The following results have been obtained:—1. The vowel sounds can be produced by maintaining the relative pitch of the simple tones of which they are composed constant, although the absolute pitch of those simple tones may vary greatly.


2018 ◽  
Vol 36 (2) ◽  
pp. 135-155 ◽  
Author(s):  
Ken'ichi Miyazaki ◽  
Andrzej Rakowski ◽  
Sylwia Makomaska ◽  
Cong Jiang ◽  
Minoru Tsuzaki ◽  
...  

Absolute pitch (AP)—an ability to identify an isolated pitch without musical context—is commonly believed to be a valuable ability for musicians. However, relative pitch (RP)—an ability to perceive pitch relations—is more important in most musical contexts. In this study, music students in East Asian and Western countries (Japan, China, Poland, Germany, and USA) were tested on AP and RP abilities. In the AP test, 60 single tones were presented in a quasirandom order over a five-octave range. In the RP test, ascending musical intervals from 1 to 11 semitones were presented in four different keys. Participants wrote down note names in the AP test and scale-degree names or musical interval names in the RP test. The conservatory-level Japanese students showed the highest AP performance and more than half of them were classified as accurate AP possessors, but only 10% were classified as accurate RP possessors. In contrast, only a small percentage of participants from Poland, Germany, and the USA were identified as accurate AP possessors, whereas many more were accurate RP possessors. Participants from China were typically intermediate on both measures. These noticeable contrasts between AP and RP performance in different countries suggest influences of the underlying socio-cultural conditions, presumably relating to music education. Given the importance of RP in music, the results suggest that more emphasis should be place on RP training, particularly in East Asian countries.


2020 ◽  
Author(s):  
Frank Russo ◽  
Dominique T Vuvan ◽  
William Forde Thompson

Note-to-note changes in brightness are able to influence the perception of interval size. Changes that are congruent with pitch tend to expand interval size, whereas changes that are incongruent tend to contract. In the case of singing, brightness of notes can vary as a function of vowel content. In the present study, we investigated whether note-to-note changes in brightness arising from vowel content influence perception of relative pitch. In Experiment 1, three-note sequences were synthesized so that they varied with regard to the brightness of vowels from note to note. As expected, brightness influenced judgments of interval size. Changes in brightness that were congruent with changes in pitch led to an expansion of perceived interval size. A follow-up experiment confirmed that the results of Experiment 1 were not due to pitch distortions. In Experiment 2, the final note of three-note sequences was removed, and participants were asked to make speeded judgments of the pitch contour. An analysis of response times revealed that brightness of vowels influenced contour judgments. Changes in brightness that were congruent with changes in pitch led to faster response times than did incongruent changes. These findings show that the brightness of vowels yields an extra-pitch influence on the perception of relative pitch in song.


2019 ◽  
Vol 37 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Frank A. Russo ◽  
Dominique T. Vuvan ◽  
William Forde Thompson

Note-to-note changes in brightness are able to influence the perception of interval size. Changes that are congruent with pitch tend to expand interval size, whereas changes that are incongruent tend to contract. In the case of singing, brightness of notes can vary as a function of vowel content. In the present study, we investigated whether note-to-note changes in brightness arising from vowel content influence perception of relative pitch. In Experiment 1, three-note sequences were synthesized so that they varied with regard to the brightness of vowels from note to note. As expected, brightness influenced judgments of interval size. Changes in brightness that were congruent with changes in pitch led to an expansion of perceived interval size. A follow-up experiment confirmed that the results of Experiment 1 were not due to pitch distortions. In Experiment 2, the final note of three-note sequences was removed, and participants were asked to make speeded judgments of the pitch contour. An analysis of response times revealed that brightness of vowels influenced contour judgments. Changes in brightness that were congruent with changes in pitch led to faster response times than did incongruent changes. These findings show that the brightness of vowels yields an extra-pitch influence on the perception of relative pitch in song.


2009 ◽  
Vol 8 (8) ◽  
pp. 75 ◽  
Author(s):  
Patrick Bermudez ◽  
Robert J Zatorre
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document