early processing
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 47)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Vol 15 ◽  
Author(s):  
Laura Lindenbaum ◽  
Sebastian Zehe ◽  
Jan Anlauff ◽  
Thomas Hermann ◽  
Johanna Maria Kissler

Intra-hemispheric interference has been often observed when body parts with neighboring representations within the same hemisphere are stimulated. However, patterns of interference in early and late somatosensory processing stages due to the stimulation of different body parts have not been explored. Here, we explore functional similarities and differences between attention modulation of the somatosensory N140 and P300 elicited at the fingers vs. cheeks. In an active oddball paradigm, 22 participants received vibrotactile intensity deviant stimulation either ipsilateral (within-hemisphere) or contralateral (between-hemisphere) at the fingers or cheeks. The ipsilateral deviant always covered a larger area of skin than the contralateral deviant. Overall, both N140 and P300 amplitudes were higher following stimulation at the cheek and N140 topographies differed between fingers and cheek stimulation. For the N140, results showed higher deviant ERP amplitudes following contralateral than ipsilateral stimulation, regardless of the stimulated body part. N140 peak latency differed between stimulated body parts with shorter latencies for the stimulation at the fingers. Regarding P300 amplitudes, contralateral deviant stimulation at the fingers replicated the N140 pattern, showing higher responses and shorter latencies than ipsilateral stimulation at the fingers. For the stimulation at the cheeks, ipsilateral deviants elicited higher P300 amplitudes and longer latencies than contralateral ones. These findings indicate that at the fingers ipsilateral deviant stimulation leads to intra-hemispheric interference, with significantly smaller ERP amplitudes than in contralateral stimulation, both at early and late processing stages. By contrast, at the cheeks, intra-hemispheric interference is selective for early processing stages. Therefore, the mechanisms of intra-hemispheric processing differ from inter-hemispheric ones and the pattern of intra-hemispheric interference in early and late processing stages is body-part specific.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicole Wetzel ◽  
Dunja Kunke ◽  
Andreas Widmann

AbstractChildren currently grow up with a marked increase in interactive digital mobile media. To what extent digital media directly modulate children’s perception and attention is largely unknown. We investigated the processing of task-irrelevant auditory information while 37 children aged 6;8–9;1-years played the identical card game on a tablet PC or with the experimenter in reality. The sound sequence included repeated standard sounds and occasionally novel sounds. Event-related potentials in the EEG, that reflect sound-related processes of perception and attention, were measured. Sounds evoked increased amplitudes of the ERP components P1, P2 and P3a during the interaction with the tablet PC compared to the human interaction. This indicates enhanced early processing of task-irrelevant information and increased allocation of attention to sounds throughout the interaction with a tablet PC compared to a human partner. Results suggest direct effects of typical situations, where children interact with a tablet PC, on neuronal mechanisms that drive perception and attention in the developing brain. More research into this phenomena is required to make specific suggestions for developing digital interactive learning programs.


2021 ◽  
Vol 15 ◽  
Author(s):  
Thomas Heinbockel ◽  
Alex Straiker

Our sensory systems such as the olfactory and visual systems are the target of neuromodulatory regulation. This neuromodulation starts at the level of sensory receptors and extends into cortical processing. A relatively new group of neuromodulators includes cannabinoids. These form a group of chemical substances that are found in the cannabis plant. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main cannabinoids. THC acts in the brain and nervous system like the chemical substances that our body produces, the endogenous cannabinoids or endocannabinoids, also nicknamed the brain’s own cannabis. While the function of the endocannabinoid system is understood fairly well in limbic structures such as the hippocampus and the amygdala, this signaling system is less well understood in the olfactory pathway and the visual system. Here, we describe and compare endocannabinoids as signaling molecules in the early processing centers of the olfactory and visual system, the olfactory bulb, and the retina, and the relevance of the endocannabinoid system for synaptic plasticity.


2021 ◽  
Author(s):  
Alex Marchioni ◽  
Luciano Prono ◽  
Mauro Mangia ◽  
Fabio Pareschi ◽  
Riccardo Rovatti ◽  
...  

Subspace analysis is a basic tool for coping with high-dimensional data and is becoming a fundamental step in early processing of many signals elaboration tasks. Nowadays trend of collecting huge quantities of usually very redundant data by means of decentralized systems suggests these techniques be deployed as close as possible to the data sources. Regrettably, despite its conceptual simplicity, subspace analysis is ultimately equivalent to eigenspace computation and brings along non-negligible computational and memory requirements. To make this fit into typical systems operating at the edge, specialized streaming algorithms have been recently devised that we here classify and review giving them a coherent description, highlighting features and analogies, and easing comparisons. Implementation of these methods is also tested on a common edge digital hardware platform to estimate not only abstract functional and complexity features, but also more practical running times and memory footprints on which compliance with real-world applications hinges.


2021 ◽  
Author(s):  
Alex Marchioni ◽  
Luciano Prono ◽  
Mauro Mangia ◽  
Fabio Pareschi ◽  
Riccardo Rovatti ◽  
...  

Subspace analysis is a basic tool for coping with high-dimensional data and is becoming a fundamental step in early processing of many signals elaboration tasks. Nowadays trend of collecting huge quantities of usually very redundant data by means of decentralized systems suggests these techniques be deployed as close as possible to the data sources. Regrettably, despite its conceptual simplicity, subspace analysis is ultimately equivalent to eigenspace computation and brings along non-negligible computational and memory requirements. To make this fit into typical systems operating at the edge, specialized streaming algorithms have been recently devised that we here classify and review giving them a coherent description, highlighting features and analogies, and easing comparisons. Implementation of these methods is also tested on a common edge digital hardware platform to estimate not only abstract functional and complexity features, but also more practical running times and memory footprints on which compliance with real-world applications hinges.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nü Long ◽  
Wei Yu ◽  
Ying Wang ◽  
Xiaohan Gong ◽  
Wen Zhang ◽  
...  

We investigated whether adults have attentional bias toward infant faces, whether it is moderated by infant facial expression, and the predictive effect of the adult attachment state on it. One hundred unmarried nulliparous college students [50 men and 50 women; aged 17–24 years (M = 19.70, SD = 1.35)] were recruited. Each completed a self-report questionnaire—the Chinese version of the State Adult Attachment Measure (SAAM), and a dot-probe task with a stimulus presentation duration of 500 ms, which used 192 black-and-white photographs of 64 people (32 infants and 32 adults; each person displayed three expressions: happy, neutral, and sad) as the experimental stimuli. The results showed that, at the duration of 500 ms, individuals' attentional bias toward infant faces disappeared, regardless of the facial expression. However, when the interaction between avoidant attachment state and face was controlled, the attentional bias was significant again, and the avoidant attachment state negatively predicted individuals' attentional bias toward infant faces. This indicates that at the suprathreshold stage, there are individual differences in the attentional bias toward infant faces, and high avoidant attachment will weaken individuals' attentional bias toward infant faces. This study advances previous studies that focused only on individuals' attention to infant faces occurring at the early processing stage of attention. The results provide direction for interventions; specifically, changing the attachment state of avoidant individuals can affect their attention to infants, which may promote the establishment of parent–child relationships.


2021 ◽  
Author(s):  
Mingjie Dai ◽  
Wenzhe Ma ◽  
Hong Kang ◽  
Matthew Sonnett ◽  
George M. Church ◽  
...  

The management of pandemics such as COVID-19 requires highly scalable and sensitive viral diagnostics, together with variant identification. Next-generation sequencing (NGS) has many attractive features for highly multiplexed testing, however current sequencing-based methods are limited in throughput by early processing steps on individual samples (e.g. RNA extraction and PCR amplification). Here we report a new method, "One-Seq", that eliminates the current bottlenecks in scalability by enabling early pooling of samples, before any extraction or amplification steps. To enable early pooling, we developed a one-pot reaction for efficient reverse transcription (RT) and upfront barcoding in extraction-free clinical samples, and a "protector" strategy in which carefully designed competing oligonucleotides prevent barcode crosstalk and preserve detection of the high dynamic range of viral load in clinical samples. This method is highly sensitive, achieving a limit of detection (LoD) down to 2.5 genome copy equivalent (gce) in contrived RT samples, 10 gce in multiplexed sequencing, and 2-5 gce with multi-primer detection, suggesting an LoD of 200-500 gce/ml for clinical testing. In clinical specimens, One-Seq showed quantitative viral detection against clinical Ct values with 6 logs of linear dynamic range and detection of SARS-CoV-2 positive samples down to ~360 gce/ml. In addition, One-Seq reports a number of hotspot viral mutations at equal scalability at no extra cost. Scaling up One-Seq would allow a throughput of 100,000-1,000,000 tests per day per single clinical lab, at an estimated amortized reagent cost of $1.5 per test and turn-around time of 7.5-15 hr.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miiamaaria V. Kujala ◽  
Jukka‑Pekka Kauppi ◽  
Heini Törnqvist ◽  
Liisa Helle ◽  
Outi Vainio ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2021 ◽  
pp. 1-10
Author(s):  
Shou-Han Zhou ◽  
Gerard Loughnane ◽  
Redmond O'Connell ◽  
Mark A. Bellgrove ◽  
Trevor T.-J. Chong

Abstract Current models of perceptual decision-making assume that choices are made after evidence in favor of an alternative accumulates to a given threshold. This process has recently been revealed in human electrophysiological (EEG) recordings, but an unresolved issue is how these neural mechanisms are modulated by competing, yet task-irrelevant, stimuli. In this study, we tested 20 healthy participants on a motion direction discrimination task. Participants monitored two patches of random dot motion simultaneously presented on either side of fixation for periodic changes in an upward or downward motion, which could occur equiprobably in either patch. On a random 50% of trials, these periods of coherent vertical motion were accompanied by simultaneous task-irrelevant, horizontal motion in the contralateral patch. Our data showed that these distractors selectively increased the amplitude of early target selection responses over scalp sites contralateral to the distractor stimulus, without impacting on responses ipsilateral to the distractor. Importantly, this modulation mediated a decrement in the subsequent buildup rate of a neural signature of evidence accumulation and accounted for a slowing of RTs. These data offer new insights into the functional interactions between target selection and evidence accumulation signals, and their susceptibility to task-irrelevant distractors. More broadly, these data neurally inform future models of perceptual decision-making by highlighting the influence of early processing of competing stimuli on the accumulation of perceptual evidence.


Sign in / Sign up

Export Citation Format

Share Document