scholarly journals Vowel Content Influences Relative Pitch Perception in Vocal Melodies

2019 ◽  
Vol 37 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Frank A. Russo ◽  
Dominique T. Vuvan ◽  
William Forde Thompson

Note-to-note changes in brightness are able to influence the perception of interval size. Changes that are congruent with pitch tend to expand interval size, whereas changes that are incongruent tend to contract. In the case of singing, brightness of notes can vary as a function of vowel content. In the present study, we investigated whether note-to-note changes in brightness arising from vowel content influence perception of relative pitch. In Experiment 1, three-note sequences were synthesized so that they varied with regard to the brightness of vowels from note to note. As expected, brightness influenced judgments of interval size. Changes in brightness that were congruent with changes in pitch led to an expansion of perceived interval size. A follow-up experiment confirmed that the results of Experiment 1 were not due to pitch distortions. In Experiment 2, the final note of three-note sequences was removed, and participants were asked to make speeded judgments of the pitch contour. An analysis of response times revealed that brightness of vowels influenced contour judgments. Changes in brightness that were congruent with changes in pitch led to faster response times than did incongruent changes. These findings show that the brightness of vowels yields an extra-pitch influence on the perception of relative pitch in song.

2020 ◽  
Author(s):  
Frank Russo ◽  
Dominique T Vuvan ◽  
William Forde Thompson

Note-to-note changes in brightness are able to influence the perception of interval size. Changes that are congruent with pitch tend to expand interval size, whereas changes that are incongruent tend to contract. In the case of singing, brightness of notes can vary as a function of vowel content. In the present study, we investigated whether note-to-note changes in brightness arising from vowel content influence perception of relative pitch. In Experiment 1, three-note sequences were synthesized so that they varied with regard to the brightness of vowels from note to note. As expected, brightness influenced judgments of interval size. Changes in brightness that were congruent with changes in pitch led to an expansion of perceived interval size. A follow-up experiment confirmed that the results of Experiment 1 were not due to pitch distortions. In Experiment 2, the final note of three-note sequences was removed, and participants were asked to make speeded judgments of the pitch contour. An analysis of response times revealed that brightness of vowels influenced contour judgments. Changes in brightness that were congruent with changes in pitch led to faster response times than did incongruent changes. These findings show that the brightness of vowels yields an extra-pitch influence on the perception of relative pitch in song.


2020 ◽  
pp. 1-15
Author(s):  
Simon Lacey ◽  
James Nguyen ◽  
Peter Schneider ◽  
K. Sathian

Abstract The crossmodal correspondence between auditory pitch and visuospatial elevation (in which high- and low-pitched tones are associated with high and low spatial elevation respectively) has been proposed as the basis for Western musical notation. One implication of this is that music perception engages visuospatial processes and may not be exclusively auditory. Here, we investigated how music perception is influenced by concurrent visual stimuli. Participants listened to unfamiliar five-note musical phrases with four kinds of pitch contour (rising, falling, rising–falling, or falling–rising), accompanied by incidental visual contours that were either congruent (e.g., auditory rising/visual rising) or incongruent (e.g., auditory rising/visual falling) and judged whether the final note of the musical phrase was higher or lower in pitch than the first. Response times for the auditory judgment were significantly slower for incongruent compared to congruent trials, i.e., there was a congruency effect, even though the visual contours were incidental to the auditory task. These results suggest that music perception, although generally regarded as an auditory experience, may actually be multisensory in nature.


2016 ◽  
Vol 59 (3) ◽  
pp. 572-582 ◽  
Author(s):  
Jing Shen ◽  
Richard Wright ◽  
Pamela E. Souza

PurposeNatural speech comes with variation in pitch, which serves as an important cue for speech recognition. The present study investigated older listeners' dynamic pitch perception with a focus on interindividual variability. In particular, we asked whether some of the older listeners' inability to perceive dynamic pitch stems from the higher susceptibility to the interference from formant changes.MethodA total of 22 older listeners and 21 younger controls with at least near-typical hearing were tested on dynamic pitch identification and discrimination tasks using synthetic monophthong and diphthong vowels.ResultsThe older listeners' ability to detect changes in pitch varied substantially, even when musical and linguistic experiences were controlled. The influence of formant patterns on dynamic pitch perception was evident in both groups of listeners. Overall, strong pitch contours (i.e., more dynamic) were perceived better than weak pitch contours (i.e., more monotonic), particularly with rising pitch patterns.ConclusionsThe findings are in accordance with the literature demonstrating some older individuals' difficulty perceiving dynamic pitch cues in speech. Moreover, they suggest that this problem may be prominent when the dynamic pitch is carried by natural speech and when the pitch contour is not strong.


10.2196/14657 ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. e14657
Author(s):  
Kyungmi Chung ◽  
Jin Young Park ◽  
DaYoung Joung ◽  
Kyungun Jhung

Background Response times to depressive symptom items in a mobile-based depression screening instrument has potential as an implicit self-schema indicator for depression but has yet to be determined; the instrument was designed to readily record depressive symptoms experienced on a daily basis. In this study, the well-validated Korean version of the Center for Epidemiologic Studies Depression Scale-Revised (K-CESD-R) was adopted. Objective The purpose of this study was to investigate the relationship between depression severity (ie, explicit measure: total K-CESD-R Mobile scores) and the latent trait of interest in schematic self-referent processing of depressive symptom items (ie, implicit measure: response times to items in the K-CESD-R Mobile scale). The purpose was to investigate this relationship among undergraduate students who had never been diagnosed with, but were at risk for, major depressive disorder (MDD) or comorbid MDD with other neurological or psychiatric disorders. Methods A total of 70 participants—36 males (51%) and 34 females (49%)—aged 19-29 years (mean 22.66, SD 2.11), were asked to complete both mobile and standard K-CESD-R assessments via their own mobile phones. The mobile K-CESD-R sessions (binary scale: yes or no) were administered on a daily basis for 2 weeks. The standard K-CESD-R assessment (5-point scale) was administered on the final day of the 2-week study period; the assessment was delivered via text message, including a link to the survey, directly to participants’ mobile phones. Results A total of 5 participants were excluded from data analysis. The result of polynomial regression analysis showed that the relationship between total K-CESD-R Mobile scores and the reaction times to the depressive symptom items was better explained by a quadratic trend—F (2, 62)=21.16, P<.001, R2=.41—than by a linear trend—F (1, 63)=25.43, P<.001, R2=.29. It was further revealed that the K-CESD-R Mobile app had excellent internal consistency (Cronbach alpha=.94); at least moderate concurrent validity with other depression scales, such as the Korean version of the Quick Inventory for Depressive Symptomatology-Self Report (ρ=.38, P=.002) and the Patient Health Questionnaire-9 (ρ=.48, P<.001); a high adherence rate for all participants (65/70, 93%); and a high follow-up rate for 10 participants whose mobile or standard K-CESD-R score was 13 or greater (8/10, 80%). Conclusions As hypothesized, based on a self-schema model for depression that represented both item and person characteristics, the inverted U-shaped relationship between the explicit and implicit self-schema measures for depression showed the potential of an organizational breakdown; this also showed the potential for a subsequent return to efficient processing of schema-consistent information along a continuum, ranging from nondepression through mild depression to severe depression. Further, it is expected that the updated K-CESD-R Mobile app can play an important role in encouraging people at risk for depression to seek professional follow-up for mental health care.


NeuroImage ◽  
2019 ◽  
Vol 200 ◽  
pp. 132-141 ◽  
Author(s):  
Simon Leipold ◽  
Marielle Greber ◽  
Silvano Sele ◽  
Lutz Jäncke

2012 ◽  
Vol 24 (5) ◽  
pp. 1186-1229 ◽  
Author(s):  
Roger Ratcliff ◽  
Michael J. Frank

In this letter, we examine the computational mechanisms of reinforce-ment-based decision making. We bridge the gap across multiple levels of analysis, from neural models of corticostriatal circuits—the basal ganglia (BG) model (Frank, 2005 , 2006 ) to simpler but mathematically tractable diffusion models of two-choice decision making. Specifically, we generated simulated data from the BG model and fit the diffusion model (Ratcliff, 1978 ) to it. The standard diffusion model fits underestimated response times under conditions of high response and reinforcement conflict. Follow-up fits showed good fits to the data both by increasing nondecision time and by raising decision thresholds as a function of conflict and by allowing this threshold to collapse with time. This profile captures the role and dynamics of the subthalamic nucleus in BG circuitry, and as such, parametric modulations of projection strengths from this nucleus were associated with parametric increases in decision boundary and its modulation by conflict. We then present data from a human reinforcement learning experiment involving decisions with low- and high-reinforcement conflict. Again, the standard model failed to fit the data, but we found that two variants similar to those that fit the BG model data fit the experimental data, thereby providing a convergence of theoretical accounts of complex interactive decision-making mechanisms consistent with available data. This work also demonstrates how to make modest modifications to diffusion models to summarize core computations of the BG model. The result is a better fit and understanding of reinforcement-based choice data than that which would have occurred with either model alone.


1992 ◽  
Vol 92 (4) ◽  
pp. 2423-2423
Author(s):  
James V. Ralston ◽  
Kathryn F. Gage ◽  
Jeffrey G. Harris ◽  
Sean P. Brooks ◽  
Louis M. Herman

Sign in / Sign up

Export Citation Format

Share Document