scholarly journals Remote Mutations and Active Site Dynamics Correlate with Catalytic Properties of Purine Nucleoside Phosphorylase

2008 ◽  
Vol 94 (10) ◽  
pp. 4078-4088 ◽  
Author(s):  
Suwipa Saen-Oon ◽  
Mahmoud Ghanem ◽  
Vern L. Schramm ◽  
Steven D. Schwartz
2004 ◽  
Vol 03 (04) ◽  
pp. 501-509 ◽  
Author(s):  
JOSHUA S. MINCER ◽  
SARA NUÑEZ ◽  
STEVEN D. SCHWARTZ

The notable three oxygen stacking that occurs upon binding of ribonucleoside substrate and phosphate nucleophile by human purine nucleoside phosphorylase (hPNP) enables the coupling of protein dynamic modes to compress this stack, squeezing the ribosyl O4' between ribosyl O5' and the nuclophilic O P . Created primarily by the motion of active site residue H257, this compression dynamically lowers the barrier height for N9–C1' ribosidic bond cleavage by as much as 20%. As such, this compression constitutes a protein promoting vibration (PPV) (S. Nuñez et al.). Presently, we demonstrate charge fluctuations in the ribose and purine components of the ribonucleoside substrate, as well as specifically across the N9–C1' ribosidic bond, that are correlated with the PPV and can explain the decrease in reaction barrier height due to their facilitating cleavage of the ribosidic bond. hPNP apparently employs protein dynamics to push electrons, a finding that suggests that this coupling may be found more generally in enzymes that catalyze substitution and elimination reactions.


1999 ◽  
Vol 344 (2) ◽  
pp. 585 ◽  
Author(s):  
Jason T. MAYNES ◽  
W.-S. YAM ◽  
Jack P. JENUTH ◽  
R. Gang YUAN ◽  
Steven A. LITSTER ◽  
...  

2005 ◽  
Vol 280 (23) ◽  
pp. 22318-22325 ◽  
Author(s):  
Yang Zang ◽  
Wen-Hu Wang ◽  
Shaw-Wen Wu ◽  
Steven E. Ealick ◽  
Ching C. Wang

Trichomonas vaginalis is an anaerobic protozoan parasite that causes trichomoniasis, a common sexually transmitted disease with worldwide impact. One of the pivotal enzymes in its purine salvage pathway, purine nucleoside phosphorylase (PNP), shows physical properties and substrate specificities similar to those of the high molecular mass bacterial PNPs but differing from those of human PNP. While carrying out studies to identify inhibitors of T. vaginalis PNP (TvPNP), we discovered that the nontoxic nucleoside analogue 2-fluoro-2′-deoxyadenosine (F-dAdo) is a “subversive substrate.” Phosphorolysis by TvPNP of F-dAdo, which is not a substrate for human PNP, releases highly cytotoxic 2-fluoroadenine (F-Ade). In vitro studies showed that both F-dAdo and F-Ade exert strong inhibition of T. vaginalis growth with estimated IC50 values of 106 and 84 nm, respectively, suggesting that F-dAdo might be useful as a potential chemotherapeutic agent against T. vaginalis. To understand the basis of TvPNP specificity, the structures of TvPNP complexed with F-dAdo, 2-fluoroadenosine, formycin A, adenosine, inosine, or 2′-deoxyinosine were determined by x-ray crystallography with resolutions ranging from 2.4 to 2.9 Å. These studies showed that the quaternary structure, monomer fold, and active site are similar to those of Escherichia coli PNP. The principal active site difference is at Thr-156, which is alanine in E. coli PNP. In the complex of TvPNP with F-dAdo, Thr-156 causes the purine base to tilt and shift by 0.5 Å as compared with the binding scheme of F-dAdo in E. coli PNP. The structures of the TvPNP complexes suggest opportunities for further improved subversive substrates beyond F-dAdo.


2010 ◽  
Vol 66 (2) ◽  
pp. 155-162
Author(s):  
You-Na Kang ◽  
Yang Zhang ◽  
Paula W. Allan ◽  
William B. Parker ◽  
Jing-Wen Ting ◽  
...  

Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides to the corresponding free bases and ribose 1-phosphate. The crystal structure of grouper iridovirus PNP (givPNP), corresponding to the first PNP gene to be found in a virus, was determined at 2.4 Å resolution. The crystals belonged to space groupR3, with unit-cell parametersa= 193.0,c= 105.6 Å, and contained four protomers per asymmetric unit. The overall structure of givPNP shows high similarity to mammalian PNPs, having an α/β structure with a nine-stranded mixed β-barrel flanked by a total of nine α-helices. The predicted phosphate-binding and ribose-binding sites are occupied by a phosphate ion and a Tris molecule, respectively. The geometrical arrangement and hydrogen-bonding patterns of the phosphate-binding site are similar to those found in the human and bovine PNP structures. The enzymatic activity assay of givPNP on various substrates revealed that givPNP can only accept 6-oxopurine nucleosides as substrates, which is also suggested by its amino-acid composition and active-site architecture. All these results suggest that givPNP is a homologue of mammalian PNPs in terms of amino-acid sequence, molecular mass, substrate specificity and overall structure, as well as in the composition of the active site.


Biochemistry ◽  
2004 ◽  
Vol 43 (50) ◽  
pp. 15966-15974 ◽  
Author(s):  
Hua Deng ◽  
Sean M. Cahill ◽  
José-Luis Abad ◽  
Andrzej Lewandowicz ◽  
Robert H. Callender ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document