transition state analogue
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 9)

H-INDEX

45
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashleigh S. Paparella ◽  
Briana L. Aboulache ◽  
Rajesh K. Harijan ◽  
Kathryn S. Potts ◽  
Peter C. Tyler ◽  
...  

AbstractClostridium difficile causes life-threatening diarrhea and is the leading cause of healthcare-associated bacterial infections in the United States. TcdA and TcdB bacterial toxins are primary determinants of disease pathogenesis and are attractive therapeutic targets. TcdA and TcdB contain domains that use UDP-glucose to glucosylate and inactivate host Rho GTPases, resulting in cytoskeletal changes causing cell rounding and loss of intestinal integrity. Transition state analysis revealed glucocationic character for the TcdA and TcdB transition states. We identified transition state analogue inhibitors and characterized them by kinetic, thermodynamic and structural analysis. Iminosugars, isofagomine and noeuromycin mimic the transition state and inhibit both TcdA and TcdB by forming ternary complexes with Tcd and UDP, a product of the TcdA- and TcdB-catalyzed reactions. Both iminosugars prevent TcdA- and TcdB-induced cytotoxicity in cultured mammalian cells by preventing glucosylation of Rho GTPases. Iminosugar transition state analogues of the Tcd toxins show potential as therapeutics for C. difficile pathology.


2021 ◽  
Vol 8 ◽  
Author(s):  
Makoto Ogata ◽  
Tamo Fukamizo ◽  
Takayuki Ohnuma

4-O-β-tri-N-acetylchitotriosyl moranoline (GN3M) is a transition-state analogue for hen egg white lysozyme (HEWL) and identified as the most potent inhibitor till date. Isothermal titration calorimetry experiments provided the thermodynamic parameters for binding of GN3M to HEWL and revealed that the binding is driven by a favorable enthalpy change (ΔH° = −11.0 kcal/mol) with an entropic penalty (−TΔS° = 2.6 kcal/mol), resulting in a free energy change (ΔG°) of −8.4 kcal/mol [Ogata et al. (2013) 288, 6,072–6,082]. Dissection of the entropic term showed that a favorable solvation entropy change (−TΔSsolv° = −9.2 kcal/mol) is its sole contributor. The change in heat capacity (ΔCp°) for the binding of GN3M was determined to be −120.2 cal/K·mol. These results indicate that the bound water molecules play a crucial role in the tight interaction between GN3M and HEWL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ross S. Firestone ◽  
Mu Feng ◽  
Indranil Basu ◽  
Karina Peregrina ◽  
Leonard H. Augenlicht ◽  
...  

AbstractA mouse model of human Familial Adenomatous Polyposis responds favorably to pharmacological inhibition of 5′-methylthioadenosine phosphorylase (MTAP). Methylthio-DADMe-Immucillin-A (MTDIA) is an orally available, transition state analogue inhibitor of MTAP. 5′-Methylthioadenosine (MTA), the substrate for MTAP, is formed in polyamine synthesis and is recycled by MTAP to S-adenosyl-l-methionine (SAM) via salvage pathways. MTDIA treatment causes accumulation of MTA, which inhibits growth of human head and neck (FaDu) and lung (H359, A549) cancers in immunocompromised mouse models. We investigated the efficacy of oral MTDIA as an anti-cancer therapeutic for intestinal adenomas in immunocompetent APCMin/+ mice, a murine model of human Familial Adenomatous Polyposis. Tumors in APCMin/+ mice were decreased in size by MTDIA treatment, resulting in markedly improved anemia and doubling of mouse lifespan. Metabolomic analysis of treated mice showed no changes in polyamine, methionine, SAM or ATP levels when compared with control mice but indicated an increase in MTA, the MTAP substrate. Generation of an MTDIA-resistant cell line in culture showed a four-fold amplification of the methionine adenosyl transferase (MAT2A) locus and expression of this enzyme. MAT2A is downstream of MTAP action and catalyzes synthesis of the SAM necessary for methylation reactions. Immunohistochemical analysis of treated mouse intestinal tissue demonstrated a decrease in symmetric dimethylarginine, a PRMT5-catalyzed modification. The anti-cancer effects of MTDIA indicate that increased cellular MTA inhibits PRMT5-mediated methylations resulting in attenuated tumor growth. Oral dosing of MTDIA as monotherapy has potential for delaying the onset and progression of colorectal cancers in Familial Adenomatous Polyposis (FAP) as well as residual duodenal tumors in FAP patients following colectomy. MTDIA causes a physiologic inactivation of MTAP and may also have efficacy in combination with inhibitors of MAT2A or PRMT5, known synthetic-lethal interactions in MTAP−/− cancer cell lines.


2020 ◽  
Author(s):  
Sahil Batra ◽  
Ashok Kumar ◽  
Balaji Prakash

AbstractGTP hydrolysis is the underlying basis for functioning of ‘biological switches’ or GTPases. Extensively studied GTPases, Ras and EF-Tu, use a conserved Gln/His that facilitates the activation of attacking water for nucleophilic attack. However, this is insufficient to explain catalysis in Hydrophobic Amino acid Substituted (HAS)-GTPases that naturally possess a hydrophobic residue in lieu of Gln/His. We had previously reported a bridging water-chain mediated catalytic mechanism for HAS-GTPase FeoB; which utilizes two distantly-located but conserved glutamates. Curiously, mutating these does not abolish GTP hydrolysis. Similarly, in this study we report our observations on another HAS-GTPase Era, wherein the mutants of catalytically important residues continue to hydrolyze GTP. We attempt to rationalize these inquisitive observations on GTP hydrolysis by FeoB and Era mutants. We propose a general theory that appears common to at least three classes of GTPases, where ‘alternative mechanisms’ emerge when the primary mechanism is disrupted. Based on the analysis of crystal structures of FeoB and Era mutants, bound to the transition state analogue GDP.AlFx, this work suggests that in the absence of catalytically important residues, the active site waters in both FeoB and Era undergo re-arrangements, which in turn helps in sustaining GTP hydrolysis. Similar employment of alternative mechanisms was also suggested for the catalytic mutants of hGBP1. Importantly, such alternatives underscore the robustness of GTP hydrolysis mechanisms in these systems, and raise important questions regarding the need for persistent GTP hydrolysis and the physiological relevance of structural plasticity seen here.


2019 ◽  
Vol 38 (7) ◽  
pp. 1407-1412 ◽  
Author(s):  
Joseph J. Gair ◽  
Yehao Qiu ◽  
Rahul L. Khade ◽  
Natalie H. Chan ◽  
Alexander S. Filatov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document