scholarly journals Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data

2008 ◽  
Vol 95 (5) ◽  
pp. 2356-2367 ◽  
Author(s):  
Norbert Kučerka ◽  
John F. Nagle ◽  
Jonathan N. Sachs ◽  
Scott E. Feller ◽  
Jeremy Pencer ◽  
...  
2012 ◽  
Vol 41 (10) ◽  
pp. 875-890 ◽  
Author(s):  
Frederick A. Heberle ◽  
Jianjun Pan ◽  
Robert F. Standaert ◽  
Paul Drazba ◽  
Norbert Kučerka ◽  
...  

2005 ◽  
Vol 38 (1) ◽  
pp. 126-131 ◽  
Author(s):  
Michael R. Brzustowicz ◽  
Axel T. Brunger

An improved small-angle X-ray scattering (SAXS) method for determining asymmetric lipid bilayer structure in unilamellar vesicles is presented. From scattering theory, analytic expressions are derived for the bilayer form factor over flat and spherical geometries, assuming the lipid bilayer electron density to be composed of a series of Gaussian shells. This is in contrast to both classic diffraction and Guinier hard-shell SAXS methods which, respectively, are capable only of ascertaining symmetric bilayer structure and limited-resolution asymmetric structure. Using model fitting and direct calculation of the form factor, using only one equation, an asymmetric electron density profile of the lipid vesicle is obtained with high accuracy, as well as the average radius. The analysis suggests that the inner leaflet of a unilamellar lipid vesicle is `rougher' than the outer one.


2020 ◽  
Vol 53 (1) ◽  
pp. 236-243
Author(s):  
Petr V. Konarev ◽  
Maxim V. Petoukhov ◽  
Liubov A. Dadinova ◽  
Natalia V. Fedorova ◽  
Pavel E. Volynsky ◽  
...  

Small-angle X-ray scattering (SAXS) is one of the major tools for the study of model membranes, but interpretation of the scattering data remains non-trivial. Current approaches allow the extraction of some structural parameters and the electron density profile of lipid bilayers. Here it is demonstrated that parametric modelling can be employed to determine the polydispersity of spherical or ellipsoidal vesicles and describe the electron density profile across the lipid bilayer. This approach is implemented in the computer program BILMIX. BILMIX delivers a description of the electron density of a lipid bilayer from SAXS data and simultaneously generates the corresponding size distribution of the unilamellar lipid vesicles.


2018 ◽  
Vol 122 (45) ◽  
pp. 10320-10329 ◽  
Author(s):  
Amin Sadeghpour ◽  
Marjorie Ladd Parada ◽  
Josélio Vieira ◽  
Megan Povey ◽  
Michael Rappolt

1995 ◽  
Author(s):  
Yibin Zheng ◽  
Peter C. Doerschuk ◽  
John E. Johnson

2020 ◽  
Author(s):  
Steve P. Meisburger ◽  
Da Xu ◽  
Nozomi Ando

AbstractMixtures of biological macromolecules are inherently difficult to study using structural methods, as increasing complexity presents new challenges for data analysis. Recently, there has been growing interest in studying evolving mixtures using small-angle X-ray scattering (SAXS) in conjunction with time-resolved, high-throughput, or chromatography-coupled setups. Deconvolution and interpretation of the resulting datasets, however, are nontrivial when neither the scattering components nor the way in which they evolve are known a priori. To address this issue, we introduce the REGALS method (REGularized Alternating Least Squares), which incorporates simple expectations about the data as prior knowledge and utilizes parameterization and regularization to provide robust deconvolution solutions. The restraints used by REGALS are general properties such as smoothness of profiles and maximum dimensions of species, which makes it well-suited for exploring datasets with unknown species. Here we apply REGALS to analyze experimental data from four types of SAXS experiment: anion-exchange (AEX) coupled SAXS, ligand titration, time-resolved mixing, and time-resolved temperature jump. Based on its performance with these challenging datasets, we anticipate that REGALS will be a valuable addition to the SAXS analysis toolkit and enable new experiments. The software is implemented in both MATLAB and python and is available freely as an open-source software package.


Sign in / Sign up

Export Citation Format

Share Document