scholarly journals Approximation of the classes $W^{r}_{\beta,\infty}$ by three-harmonic Poisson integrals

2019 ◽  
Vol 11 (2) ◽  
pp. 321-334 ◽  
Author(s):  
U.Z. Hrabova ◽  
I.V. Kal'chuk

In the paper, we solve one extremal problem of the theory of approximation of functional classes by linear methods. Namely, questions are investigated concerning the approximation of classes of differentiable functions by $\lambda$-methods of summation for their Fourier series, that are defined by the set $\Lambda =\{{{\lambda }_{\delta }}(\cdot )\}$ of continuous on $\left[ 0,\infty \right)$ functions depending on a real parameter $\delta$. The Kolmogorov-Nikol'skii problem is considered, that is one of the special problems among the extremal problems of the theory of approximation. That is, the problem of finding of asymptotic equalities for the quantity $$\mathcal{E}{{\left( \mathfrak{N};{{U}_{\delta}} \right)}_{X}}=\underset{f\in \mathfrak{N}}{\mathop{\sup }}\,{{\left\| f\left( \cdot \right)-{{U}_{\delta }}\left( f;\cdot;\Lambda \right) \right\|}_{X}},$$ where $X$ is a normalized space, $\mathfrak{N}\subseteq X$ is a given function class, ${{U}_{\delta }}\left( f;x;\Lambda \right)$ is a specific method of summation of the Fourier series. In particular, in the paper we investigate approximative properties of the three-harmonic Poisson integrals on the Weyl-Nagy classes. The asymptotic formulas are obtained for the upper bounds of deviations of the three-harmonic Poisson integrals from functions from the classes $W^{r}_{\beta,\infty}$. These formulas provide a solution of the corresponding Kolmogorov-Nikol'skii problem. Methods of investigation for such extremal problems of the theory of approximation arised and got their development owing to the papers of A.N. Kolmogorov, S.M. Nikol'skii, S.B. Stechkin, N.P. Korneichuk, V.K. Dzyadyk, A.I. Stepanets and others. But these methods are used for the approximations by linear methods defined by triangular matrices. In this paper we modified the mentioned above methods in order to use them while dealing with the summation methods defined by a set of functions of a natural argument.

2020 ◽  
Vol 8 (2) ◽  
pp. 114-121
Author(s):  
O. Rovenska

The paper is devoted to the approximation by arithmetic means of Fourier sums of classes of periodic functions of high smoothness. The simplest example of a linear approximation of continuous periodic functions of a real variable is the approximation by partial sums of the Fourier series. The sequences of partial Fourier sums are not uniformly convergent over the class of continuous periodic functions. A significant number of works is devoted to the study of other approximation methods, which are generated by transformations of Fourier sums and allow us to construct trigonometrical polynomials that would be uniformly convergent for each continuous function. Over the past decades, Fejer sums and de la Vallee Poussin sums have been widely studied. One of the most important direction in this field is the study of the asymptotic behavior of upper bounds of deviations of linear means of Fourier sums on different classes of periodic functions. Methods of investigation of integral representations of deviations of trigonometric polynomials generated by linear methods of summation of Fourier series, were originated and developed in the works of S.M. Nikolsky, S.B. Stechkin, N.P. Korneichuk, V.K. Dzadyk and others. The aim of the work systematizes known results related to the approximation of classes of Poisson integrals by arithmetic means of Fourier sums, and presents new facts obtained for particular cases. In the paper is studied the approximative properties of repeated Fejer sums on the classes of periodic analytic functions of real variable. Under certain conditions, we obtained asymptotic formulas for upper bounds of deviations of repeated Fejer sums on classes of Poisson integrals. The obtained formulas provide a solution of the corresponding Kolmogorov-Nikolsky problem without any additional conditions.


2020 ◽  
Vol 12 (1) ◽  
pp. 138-147
Author(s):  
I.V. Kal'chuk ◽  
Yu.I. Kharkevych ◽  
K.V. Pozharska

Among the actual problems of the theory of approximation of functions one should highlight a wide range of extremal problems, in particular, studying the approximation of functional classes by various linear methods of summation of the Fourier series. In this paper, we consider the well-known Lipschitz class $\textrm{Lip}_1\alpha $, i.e. the class of continuous $ 2\pi $-periodic functions satisfying the Lipschitz condition of order $\alpha$, $0<\alpha\le 1$, and the conjugate Poisson integral acts as the approximating operator. One of the relevant tasks at present is the possibility of finding constants for asymptotic terms of the indicated degree of smallness (the so-called Kolmogorov-Nikol'skii constants) in asymptotic distributions of approximations by the conjugate Poisson integrals of functions from the Lipschitz class in the uniform metric. In this paper, complete asymptotic expansions are obtained for the exact upper bounds of deviations of the conjugate Poisson integrals from functions from the class $\textrm{Lip}_1\alpha $. These expansions make it possible to write down the Kolmogorov-Nikol'skii constants of the arbitrary order of smallness.


Author(s):  
Oleg Novikov ◽  
Olga Rovenska

The paper deals with the problems of approximation in a uniform metric of periodic functions of many variables by trigonometric polynomials, which are generated by linear methods of summation of Fourier series. Questions of asymptotic behavior of the upper bounds of deviations of linear operators generated by the use of linear methods of summation of Fourier series on the classes of periodic differentiable functions are studied in many works. Methods of investigation of integral representations of deviations of polynomials on the classes of periodic differentiable functions of real variable originated and received its development through the works of S.M. Nikol'skii, S.B. Stechkin, N.P.Korneichuk, V.K. Dzadik, A.I. Stepanets, etc. Along with the study of approximation by linear methods of classes of functions of one variable, are studied similar problems of approximation by linear methods of classes of functions of many variables. In addition to the approximative properties of rectangular Fourier sums, are studied approximative properties of other approximation methods: the rectangular sums of Valle Poussin, Zigmund, Rogozinsky, Favar. In this paper we consider the classes of \(\overline{\psi}\)-differentiable periodic functions of many variables, allowing separately to take into account the properties of partial and mixed \(\overline{\psi}\)-derivatives, and given by analogy with the classes of \(\overline{\psi}\)-differentiable periodic functions of one variable. Integral representations of rectangular linear means of Fourier series on classes of \(\overline{\psi}\)-differentiable periodic functions of many variables are obtained. The obtained formulas can be useful for further investigation of the approximative properties of various linear rectangular methods on the classes \(\overline{\psi}\)-differentiable periodic functions of many variables in order to obtain a solution to the corresponding Kolmogorov-Nikolsky problems.


1962 ◽  
Vol 14 ◽  
pp. 540-551 ◽  
Author(s):  
W. C. Royster

Let Σ represent the class of analytic functions(1)which are regular, except for a simple pole at infinity, and univalent in |z| > 1 and map |z| > 1 onto a domain whose complement is starlike with respect to the origin. Further let Σ- 1 be the class of inverse functions of Σ which at w = ∞ have the expansion(2).In this paper we develop variational formulas for functions of the classes Σ and Σ- 1 and obtain certain properties of functions that extremalize some rather general functionals pertaining to these classes. In particular, we obtain precise upper bounds for |b2| and |b3|. Precise upper bounds for |b1|, |b2| and |b3| are given by Springer (8) for the general univalent case, provided b0 =0.


2020 ◽  
Vol 17 (4) ◽  
pp. 538-548
Author(s):  
Ulyana Hrabova ◽  
Inna Kal'chuk ◽  
Leontii Filozof

We obtained the asymptotic equalities for the least upper bounds of the approximation of functions from the classes $W^{r}_{\beta}H^{\alpha}$ by three-harmonic Poisson integrals in the case $r+\alpha\leq 3$ in the uniform metric.


Sign in / Sign up

Export Citation Format

Share Document