scholarly journals Inverse sum indeg coindex of graphs

2019 ◽  
Vol 11 (2) ◽  
pp. 399-406
Author(s):  
K. Pattabiraman

The inverse sum indeg coindex $\overline{ISI}(G)$ of a simple connected graph $G$ is defined as the sum of the terms $\frac{d_G(u)d_G(v)}{d_G(u)+d_G(v)}$ over all edges $uv$ not in $G,$ where $d_G(u)$ denotes the degree of a vertex $u$ of $G.$ In this paper, we present the upper bounds on inverse sum indeg coindex of edge corona product graph and Mycielskian graph. In addition, we obtain the exact value of both inverse sum indeg index and its coindex of a double graph.

Author(s):  
Bommanahal Basavanagoud ◽  
Shreekant Patil

The modified second multiplicative Zagreb index of a connected graph G, denoted by $\prod_{2}^{*}(G)$, is defined as $\prod_{2}^{*}(G)=\prod \limits_{uv\in E(G)}[d_{G}(u)+d_{G}(v)]^{[d_{G}(u)+d_{G}(v)]}$ where $d_{G}(z)$ is the degree of a vertex z in G. In this paper, we present some upper bounds for the modified second multiplicative Zagreb index of graph operations such as union, join, Cartesian product, composition and corona product of graphs are derived.The modified second multiplicative Zagreb index of aconnected graph , denoted by , is defined as where is the degree of avertex in . In this paper, we present some upper bounds for themodified second multiplicative Zagreb index of graph operations such as union,join, Cartesian product, composition and corona product of graphs are derived.


2016 ◽  
Vol 47 (2) ◽  
pp. 163-178
Author(s):  
Mahdieh Azari ◽  
Ali Iranmanesh

The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indices and polynomials under the join and corona product of graphs. Results are applied for some classes of graphs such as suspensions, bottlenecks, and thorny graphs.


2019 ◽  
Vol 11 (04) ◽  
pp. 1950045
Author(s):  
K. Pattabiraman ◽  
Manzoor Ahmad Bhat

The product degree distance of a connected graph [Formula: see text] is defined as [Formula: see text] where [Formula: see text] is the degree of a vertex [Formula: see text] and [Formula: see text] is the distance between the vertices [Formula: see text] and [Formula: see text] in [Formula: see text] In this paper, we obtain two upper bounds for product degree distance of [Formula: see text]-sums of graphs which is defined by Eliasi [Four new sums of graphs and their Wiener indices, Discr. Appl. Math. 157 (2009) 794–803.]


Author(s):  
Virdina Rahmayanti ◽  
Moh. Imam Utoyo ◽  
Liliek Susilowati

Adjacency metric dimension and local adjacency metric dimension are the development of metric dimension. The purpose of this research is to determine the adjacency metric dimension of corona graph between any connected graph G and non-trivial graph H denoted by dimA(G⊙H), to determine the local adjacency metric dimension of corona graph between any connected graph G and non-trivial graph H denoted by dimA,l(G⊙H), and to determine the correlation between adjacency metric dimension and local adjacency metric dimension of corona product graph operations. In this research, it is found out that the value of adjacency metric dimension of G⊙H graph is affected by the basic characteristic of H and the domination characteristic. Meanwhile, the value of local adjacency metric dimension of G⊙H graph is only affected by the basic characteristic of H Futhermore, it is found a correlation of adjacency metric dimension and local adjacency metric dimension of corona product graph between any connected graph G and non-trivial graph H.


2014 ◽  
Vol 06 (02) ◽  
pp. 1450029 ◽  
Author(s):  
YU-PEI HUANG ◽  
CHIH-WEN WENG

In a simple connected graph, the average 2-degree of a vertex is the average degree of its neighbors. With the average 2-degree sequence and the maximum degree ratio of adjacent vertices, we present a sharp upper bound of the spectral radius of the adjacency matrix of a graph, which improves a result in [Y. H. Chen, R. Y. Pan and X. D. Zhang, Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete Math. Algorithms Appl.3(2) (2011) 185–191].


2020 ◽  
pp. 1401-1406
Author(s):  
G. H. SHIRDEL ◽  
H. REZAPOUR ◽  
R. NASIRI

The topological indices are functions on the graph that do not depend on the labeling of their vertices. They are used by chemists for studying the properties of chemical compounds.  Let  be a simple connected graph. The Hyper-Zagreb index of the graph ,  is defined as  ,where  and  are the degrees of vertex  and , respectively. In this paper, we study the Hyper-Zagreb index and give upper and lower bounds for .


Filomat ◽  
2014 ◽  
Vol 28 (3) ◽  
pp. 579-590 ◽  
Author(s):  
Mingqiang An ◽  
Liming Xiong ◽  
Kinkar Das

The degree distance (DD), which is a weight version of the Wiener index, defined for a connected graph G as vertex-degree-weighted sum of the distances, that is, DD(G) = ?{u,v}?V(G)[dG(u)+dG(v)]d[u,v|G), where dG(u) denotes the degree of a vertex u in G and d(u,v|G) denotes the distance between two vertices u and v in G: In this paper, we establish two upper bounds for the degree distances of four sums of two graphs in terms of other indices of two individual graphs.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850006 ◽  
Author(s):  
Hanlin Chen ◽  
Hanyuan Deng

Let [Formula: see text] be a simple connected graph. The inverse sum indeg index of [Formula: see text], denoted by [Formula: see text], is defined as the sum of the weights [Formula: see text] of all edges [Formula: see text] of [Formula: see text], where [Formula: see text] denotes the degree of a vertex in [Formula: see text]. In this paper, we derive some bounds for the inverse sum indeg index in terms of some graph parameters, such as vertex (edge) connectivity, chromatic number, vertex bipartiteness, etc. The corresponding extremal graphs are characterized, respectively.


Author(s):  
Agnes D. Garciano ◽  
Maria Czarina T. Lagura ◽  
Reginaldo M. Marcelo

For a simple connected graph [Formula: see text] let [Formula: see text] be a coloring of [Formula: see text] where two adjacent vertices may be assigned the same color. Let [Formula: see text] be the sum of colors of neighbors of any vertex [Formula: see text] The coloring [Formula: see text] is a sigma coloring of [Formula: see text] if for any two adjacent vertices [Formula: see text] [Formula: see text] The least number of colors required in a sigma coloring of [Formula: see text] is the sigma chromatic number of [Formula: see text] and is denoted by [Formula: see text] A sigma coloring of a graph is a neighbor-distinguishing type of coloring and it is known that the sigma chromatic number of a graph is bounded above by its chromatic number. It is also known that for a path [Formula: see text] and a cycle [Formula: see text] where [Formula: see text] [Formula: see text] and [Formula: see text] if [Formula: see text] is even. Let [Formula: see text] the join of the graphs [Formula: see text], where [Formula: see text] or [Formula: see text] [Formula: see text] and [Formula: see text] is not an odd cycle for any [Formula: see text]. It has been shown that if [Formula: see text] for [Formula: see text] and [Formula: see text] then [Formula: see text]. In this study, we give necessary and sufficient conditions under which [Formula: see text] where [Formula: see text] is the join of copies of [Formula: see text] and/or [Formula: see text] for the same value of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be positive integers with [Formula: see text] and [Formula: see text] In this paper, we show that [Formula: see text] if and only if [Formula: see text] or [Formula: see text] is odd, [Formula: see text] is even and [Formula: see text]; and [Formula: see text] if and only if [Formula: see text] is even and [Formula: see text] We also obtain necessary and sufficient conditions on [Formula: see text] and [Formula: see text], so that [Formula: see text] for [Formula: see text] where [Formula: see text] or [Formula: see text] other than the cases [Formula: see text] and [Formula: see text]


2021 ◽  
Vol 10 (4) ◽  
pp. 2115-2129
Author(s):  
P. Kandan ◽  
S. Subramanian

On the great success of bond-additive topological indices like Szeged, Padmakar-Ivan, Zagreb, and irregularity measures, yet another index, the Mostar index, has been introduced recently as a peripherality measure in molecular graphs and networks. For a connected graph G, the Mostar index is defined as $$M_{o}(G)=\displaystyle{\sum\limits_{e=gh\epsilon E(G)}}C(gh),$$ where $C(gh) \,=\,\left|n_{g}(e)-n_{h}(e)\right|$ be the contribution of edge $uv$ and $n_{g}(e)$ denotes the number of vertices of $G$ lying closer to vertex $g$ than to vertex $h$ ($n_{h}(e)$ define similarly). In this paper, we prove a general form of the results obtained by $Do\check{s}li\acute{c}$ et al.\cite{18} for compute the Mostar index to the Cartesian product of two simple connected graph. Using this result, we have derived the Cartesian product of paths, cycles, complete bipartite graphs, complete graphs and to some molecular graphs.


Sign in / Sign up

Export Citation Format

Share Document