scholarly journals Strictly diagonal holomorphic functions on Banach spaces

2015 ◽  
Vol 7 (2) ◽  
pp. 254-258
Author(s):  
O.I. Fedak ◽  
A.V. Zagorodnyuk

In this paper we investigate the boundedness of holomorphic functionals on a Banach space with a normalized basis $\{e_n\}$ which have a very special form $f(x)=f(0)+\sum_{n=1}^\infty c_nx_n^n$ and which we call strictly diagonal. We consider under which conditions strictly diagonal functions are entire and uniformly continuous on every ball of a fixed radius.

2019 ◽  
Vol 38 (3) ◽  
pp. 133-140
Author(s):  
Abdelaziz Tajmouati ◽  
Abdeslam El Bakkali ◽  
Ahmed Toukmati

In this paper we introduce and study the M-hypercyclicity of strongly continuous cosine function on separable complex Banach space, and we give the criteria for cosine function to be M-hypercyclic. We also prove that every separable infinite dimensional complex Banach space admits a uniformly continuous cosine function.


2004 ◽  
Vol 15 (05) ◽  
pp. 467-471 ◽  
Author(s):  
BENGT JOSEFSON

Let E be a Banach space and let B(R)⊂E denote the open ball with centre at 0 and radius R. The following problem is studied: given 0<r<R, ∊>0 and a function f holomorphic on B(R), does there always exist an entire function g on E such that |f-g|<∊ on B(r)? L. Lempert has proved that the answer is positive for Banach spaces having an unconditional basis with unconditional constant 1. In this paper a somewhat shorter proof of Lemperts result is given. In general it is not possible to approximate f by polynomials since f does not need to be bounded on B(r).


2000 ◽  
Vol 62 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Shamil Makhmutov ◽  
Maria Tjani

We characterise the compact composition operators from any Mobius invariant Banach space to VMOA, the space of holomorphic functions on the unit disk U that have vanishing mean oscillation. We use this to obtain a characterisation of the compact composition operators from the Bloch space to VMOA. Finally, we study some properties of hyperbolic VMOA functions. We show that a function is hyperbolic VMOA if and only if it is the symbol of a compact composition operator from the Bloch space to VMOA.


2004 ◽  
Vol 69 (1) ◽  
pp. 125-131 ◽  
Author(s):  
R. Fry

Let X be a separable Banach space which admits a C1-smooth norm, and let G ⊂ X be an open subset. Then any real-valued, bounded and uniformly continuous map on G can be uniformly approximated on G by C1-smooth functions with bounded derivative.


2019 ◽  
Vol 11 (1) ◽  
pp. 158-162
Author(s):  
H.M. Pryimak

It is known due to R. Aron, B. Cole and T. Gamelin that every complex homomorphism of the algebra of entire functions of bounded type on a Banach space $X$ can be approximated in some sense by a net of point valued homomorphism. In this paper we consider the question about a generalization of this result for the case of homomorphisms to any commutative Banach algebra $A.$ We obtained some positive results if $A$ is the algebra of uniformly continuous analytic functions on the unit ball of $X.$


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Enrique Jordá

We study the weighted Banach spaces of vector-valued holomorphic functions defined on an open and connected subset of a Banach space. We use linearization results on these spaces to get conditions which ensure that a functionfdefined in a subsetAof an open and connected subsetUof a Banach spaceX, with values in another Banach spaceE, and admitting certain weak extensions in a Banach space of holomorphic functions can be holomorphically extended in the corresponding Banach space of vector-valued functions.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Sung Guen Kim ◽  
Han Ju Lee

The generalized numerical index of a Banach space is introduced, and its properties on certain Banach spaces are studied. Ed-dari's theorem on the numerical index is extended to the generalized index and polynomial numerical index of a Banach space. The denseness of numerical strong peak holomorphic functions is also studied.


Author(s):  
Shawgy Hussein ◽  
Simon Joseph ◽  
Ahmed Sufyan ◽  
Murtada Amin ◽  
Ranya Tahire ◽  
...  

In this paper, apply an established transference principle to obtain the boundedness of certain functional calculi for the sequence of semigroup generators. It is proved that if be the sequence generates 0- semigroups on a Hilbert space, then for each the sequence of operators has bounded calculus for the closed ideal of bounded holomorphic functions on right half–plane. The bounded of this calculus grows at most logarithmically as. As a consequence decay at ∞. Then showed that each sequence of semigroup generator has a so-called (strong) m-bounded calculus for all m∈ℕ, and that this property characterizes the sequence of semigroup generators. Similar results are obtained if the underlying Banach space is a UMD space. Upon restriction to so-called semigroups, the Hilbert space results actually hold in general Banach spaces.


1986 ◽  
Vol 33 (3) ◽  
pp. 419-434 ◽  
Author(s):  
Nikolaos S. Papageorgiou

We consider the Cauchy problem x (t) = f (t,x (t)), x (O) = xO defined in a nonreflexive Banach space and with the vector field f: T × X → X being weakly uniformly continuous. Using a compactness hypothesis that involves the weak measure of noncompactness, we prove that the solution set of the above Cauchy problem is nonempty, connected and compact in .


Sign in / Sign up

Export Citation Format

Share Document