scholarly journals The structure of solutions of the matrix linear unilateral polynomial equation with two variables

2017 ◽  
Vol 9 (1) ◽  
pp. 48-56
Author(s):  
N.S. Dzhaliuk ◽  
V.M. Petrychkovych

We investigate the structure of solutions of the matrix linear polynomial equation $A(\lambda)X(\lambda)+B(\lambda)Y(\lambda)=C(\lambda),$ in particular, possible degrees of the solutions. The solving of this equation is reduced to the solving of the equivalent matrix polynomial equation with matrix coefficients in triangular forms with invariant factors on the main diagonals, to which the matrices $A (\lambda), B(\lambda)$ \ and \ $C(\lambda)$ are reduced by means of semiscalar equivalent transformations. On the basis of it, we have pointed out the bounds of the degrees of the matrix polynomial equation solutions. Necessary and sufficient conditions for the uniqueness of a solution with a minimal degree are established. An effective method for constructing minimal degree solutions of the equations is suggested. In this article, unlike well-known results about the estimations of the degrees of the solutions of the matrix polynomial equations in which both matrix coefficients are regular or at least one of them is regular, we have considered the case when the matrix polynomial equation has arbitrary matrix coefficients $A(\lambda)$ and $B(\lambda).$ 

Author(s):  
A. T. Mithun ◽  
M. C. Lineesh

Construction of multiwavelets begins with finding a solution to the multiscaling equation. The solution is known as multiscaling function. Then, a multiwavelet basis is constructed from the multiscaling function. Symmetric multiscaling functions make the wavelet basis symmetric. The existence and properties of the multiscaling function depend on the symbol function. Symbol functions are trigonometric matrix polynomials. A trigonometric matrix polynomial can be constructed from a pair of matrices known as the standard pair. The square matrix in the pair and the matrix polynomial have the same spectrum. Our objective is to find necessary and sufficient conditions on standard pairs for the existence of compactly supported, symmetric multiscaling functions. First, necessary as well as sufficient conditions on the standard pairs for the existence of symbol functions corresponding to compactly supported multiscaling functions are found. Then, the necessary and sufficient conditions on the class of standard pairs, which make the multiscaling function symmetric, are derived. A method to construct symbol function corresponding to a compactly supported, symmetric multiscaling function from an appropriate standard pair is developed.


Author(s):  
Lu Tan ◽  
Xue-Han Cheng ◽  
Tong-Song Jiang ◽  
Si-Tao Ling

In this paper, we focus on discussing diagonal solutions and general solutions of second-order matrix polynomial equation of high degree in complex field. By characterizing some algebraic properties of the mentioned two types of the solutions, we present sufficient conditions that a general second-order matrix polynomial equation has diagonal solutions or general solutions. Analytic expressions of the solutions, as well as the corresponding algorithms for finding the solutions are provided. An example is given so as to verify the theoretical results we have derived.


1977 ◽  
Vol 16 (3) ◽  
pp. 361-369
Author(s):  
M. Deza ◽  
Peter Eades

Necessary and sufficient conditions are given for a square matrix to te the matrix of distances of a circulant code. These conditions are used to obtain some inequalities for cyclic difference sets, and a necessary condition for the existence of circulant weighing matrices.


1993 ◽  
Vol 114 (1) ◽  
pp. 111-130 ◽  
Author(s):  
A. Sudbery

AbstractWe construct a non-commutative analogue of the algebra of differential forms on the space of endomorphisms of a vector space, given a non-commutative algebra of functions and differential forms on the vector space. The construction yields a differential bialgebra which is a skew product of an algebra of functions and an algebra of differential forms with constant coefficients. We give necessary and sufficient conditions for such an algebra to exist, show that it is uniquely determined by the differential algebra on the vector space, and show that it is a non-commutative superpolynomial algebra in the matrix elements and their differentials (i.e. that it has the same dimensions of homogeneous components as in the classical case).


2021 ◽  
Vol 71 (6) ◽  
pp. 1375-1400
Author(s):  
Feyzi Başar ◽  
Hadi Roopaei

Abstract Let F denote the factorable matrix and X ∈ {ℓp , c 0, c, ℓ ∞}. In this study, we introduce the domains X(F) of the factorable matrix in the spaces X. Also, we give the bases and determine the alpha-, beta- and gamma-duals of the spaces X(F). We obtain the necessary and sufficient conditions on an infinite matrix belonging to the classes (ℓ p (F), ℓ ∞), (ℓ p (F), f) and (X, Y(F)) of matrix transformations, where Y denotes any given sequence space. Furthermore, we give the necessary and sufficient conditions for factorizing an operator based on the matrix F and derive two factorizations for the Cesàro and Hilbert matrices based on the Gamma matrix. Additionally, we investigate the norm of operators on the domain of the matrix F. Finally, we find the norm of Hilbert operators on some sequence spaces and deal with the lower bound of operators on the domain of the factorable matrix.


Sign in / Sign up

Export Citation Format

Share Document