scholarly journals A Bayesian Approach for Analysis of Whole-Genome Bisulfite Sequencing Data Identifies Disease-Associated Changes in DNA Methylation

Genetics ◽  
2017 ◽  
Vol 205 (4) ◽  
pp. 1443-1458 ◽  
Author(s):  
Owen J. L. Rackham ◽  
Sarah R. Langley ◽  
Thomas Oates ◽  
Eleni Vradi ◽  
Nathan Harmston ◽  
...  
2019 ◽  
Vol 47 (19) ◽  
pp. e117-e117 ◽  
Author(s):  
Phillip Wulfridge ◽  
Ben Langmead ◽  
Andrew P Feinberg ◽  
Kasper D Hansen

Abstract In the study of DNA methylation, genetic variation between species, strains or individuals can result in CpG sites that are exclusive to a subset of samples, and insertions and deletions can rearrange the spatial distribution of CpGs. How to account for this variation in an analysis of the interplay between sequence variation and DNA methylation is not well understood, especially when the number of CpG differences between samples is large. Here, we use whole-genome bisulfite sequencing data on two highly divergent mouse strains to study this problem. We show that alignment to personal genomes is necessary for valid methylation quantification. We introduce a method for including strain-specific CpGs in differential analysis, and show that this increases power. We apply our method to a human normal-cancer dataset, and show this improves accuracy and power, illustrating the broad applicability of our approach. Our method uses smoothing to impute methylation levels at strain-specific sites, thereby allowing strain-specific CpGs to contribute to the analysis, while accounting for differences in the spatial occurrences of CpGs. Our results have implications for joint analysis of genetic variation and DNA methylation using bisulfite-converted DNA, and unlocks the use of personal genomes for addressing this question.


2016 ◽  
Author(s):  
Phillip Wulfridge ◽  
Ben Langmead ◽  
Andrew P. Feinberg ◽  
Kasper D. Hansen

AbstractIn the study of DNA methylation, genetic variation between species, strains, or individuals can result in CpG sites that are exclusive to a subset of samples, and insertions and deletions can rearrange the spatial distribution of CpGs. How to account for this variation in an analysis of the interplay between sequence variation and DNA methylation is not well understood, especially when the number of CpG differences between samples is large. Here we use whole-genome bisulfite sequencing data on two highly divergent inbred mouse strains to study this problem. We find that while the large number of strain-specific CpGs necessitates considerations regarding the reference genomes used during alignment, properties such as CpG density are surprisingly conserved across the genome. We introduce a method for including strain-specific CpGs in differential analysis, and show that accounting for strain-specific CpGs increases the power to find differentially methylated regions between the strains. Our method uses smoothing to impute methylation levels at strain-specific sites, thereby allowing strain-specific CpGs to contribute to the analysis, and also allowing us to account for differences in the spatial occurrences of CpGs. Our results have implications for analysis of genetic variation and DNA methylation using bisulfite-converted DNA.


2012 ◽  
Vol 41 (4) ◽  
pp. e55-e55 ◽  
Author(s):  
Touati Benoukraf ◽  
Sarawut Wongphayak ◽  
Luqman Hakim Abdul Hadi ◽  
Mengchu Wu ◽  
Richie Soong

BMC Genomics ◽  
2015 ◽  
Vol 16 (Suppl 12) ◽  
pp. S11 ◽  
Author(s):  
Wen-Wei Liao ◽  
Ming-Ren Yen ◽  
Evaline Ju ◽  
Fei-Man Hsu ◽  
Larry Lam ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Marius Wöste ◽  
Elsa Leitão ◽  
Sandra Laurentino ◽  
Bernhard Horsthemke ◽  
Sven Rahmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document