crop plants
Recently Published Documents


TOTAL DOCUMENTS

2204
(FIVE YEARS 435)

H-INDEX

100
(FIVE YEARS 14)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ayomide Emmanuel Fadiji ◽  
Olubukola Oluranti Babalola ◽  
Gustavo Santoyo ◽  
Michele Perazzolli

Crop plants are more often exposed to abiotic stresses in the current age of fast-evolving climate change. This includes exposure to extreme and unpredictable changes in climatic conditions, phytosanitary hazards, and cultivation conditions, which results in drastic losses in worldwide agricultural productions. Plants coexist with microbial symbionts, some of which play key roles in the ecosystem and plant processes. The application of microbial biostimulants, which take advantage of symbiotic relationships, is a long-term strategy for improving plant productivity and performance, even in the face of climate change-associated stresses. Beneficial filamentous fungi, yeasts, and bacteria are examples of microbial biostimulants, which can boost the growth, yield, nutrition and stress tolerance in plants. This paper highlights recent information about the role of microbial biostimulants and their potential application in mitigating the abiotic stresses occurring on crop plants due to climate change. A critical evaluation for their efficient use under diverse climatic conditions is also made. Currently, accessible products generally improve cultural conditions, but their action mechanisms are mostly unknown, and their benefits are frequently inconsistent. Thus, further studies that could lead to the more precisely targeted products are discussed.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 212
Author(s):  
Meike Hüdig ◽  
Natalie Laibach ◽  
Anke-Christiane Hein

The rapid development of genome editing and other new genomic techniques (NGT) has evoked manifold expectations on purposes of the application of these techniques to crop plants. In this study, we identify and align these expectations with current scientific development. We apply a semi-quantitative text analysis approach on political, economic, and scientific opinion papers to disentangle and extract expectations towards the application of NGT-based plants. Using the sustainable development goals (SDG) of the 2030 agenda as categories, we identify contributions to food security or adaptation to climatic changes as the most frequently mentioned expectations, accompanied by the notion of sustainable agriculture and food systems. We then link SDG with relevant plant traits and review existing research and commercial field trials for genome-edited crop plants. For a detailed analysis we pick as representative traits drought tolerance and resistance against fungal pathogens. Diverse genetic setscrews for both traits have been identified, modified, and tested under laboratory conditions, although there are only a few in the field. All in all, NGT-plants that can withstand more than one stressor or different environments are not documented in advanced development states. We further conclude that developing new plants with modified traits will not be sufficient to reach food security or adaption to climatic changes in a short time frame. Further scientific development of sustainable agricultural systems will need to play an important role to tackle SDG challenges, as well.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shehzad Iqbal ◽  
Xiukang Wang ◽  
Iqra Mubeen ◽  
Muhammad Kamran ◽  
Iqra Kanwal ◽  
...  

In the past and present, human activities have been involved in triggering global warming, causing drought stresses that affect animals and plants. Plants are more defenseless against drought stress; and therefore, plant development and productive output are decreased. To decrease the effect of drought stress on plants, it is crucial to establish a plant feedback mechanism of resistance to drought. The drought reflex mechanisms include the physical stature physiology and biochemical, cellular, and molecular-based processes. Briefly, improving the root system, leaf structure, osmotic-balance, comparative water contents and stomatal adjustment are considered as most prominent features against drought resistance in crop plants. In addition, the signal transduction pathway and reactive clearance of oxygen are crucial mechanisms for coping with drought stress via calcium and phytohormones such as abscisic acid, salicylic acid, jasmonic acid, auxin, gibberellin, ethylene, brassinosteroids and peptide molecules. Furthermore, microorganisms, such as fungal and bacterial organisms, play a vital role in increasing resistance against drought stress in plants. The number of characteristic loci, transgenic methods and the application of exogenous substances [nitric oxide, (C28H48O6) 24-epibrassinolide, proline, and glycine betaine] are also equally important for enhancing the drought resistance of plants. In a nutshell, the current review will mainly focus on the role of phytohormones and related mechanisms involved in drought tolerance in various crop plants.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 177
Author(s):  
Gokhan Hacisalihoglu

Global food security and sustainability in the time of pandemics (COVID-19) and a growing world population are important challenges that will require optimized crop productivity under the anticipated effects of climate change [...]


2022 ◽  
pp. 1-15
Author(s):  
Vidya Venkateswaran ◽  
Shalini Muralidharan ◽  
Allwyn Vyas Gopalakrishnan ◽  
Nagasathiya Krishnan ◽  
Devadasan Velmurugan ◽  
...  
Keyword(s):  

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Robert L. Meagher ◽  
Rodney N. Nagoshi ◽  
Shelby J. Fleischer ◽  
John K. Westbrook ◽  
David L. Wright ◽  
...  

Abstract Background Fall armyworm, Spodoptera frugiperda (J. E. Smith) is a migratory moth that annually migrates northward each spring from sites in southern Florida and southern Texas. This caterpillar pest feeds on and damages row, turf and vegetable crops in the eastern and central U.S. Before migrating in spring, it feeds on cover crops in central and eastern Florida and expands its populations. Our objective was to use multi-year studies to compare fall armyworm populations that develop in cover crop plants. Methods A series of field experiments and a laboratory feeding study were conducted to compare infestation and feeding and of fall armyworm on different cover crop plants. Field experiments had plots planted with corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], a standard cover crop in Florida, and two alternative cover crops, sunn hemp (Crotalaria juncea L.) and cowpea [Vigna unguiculata (L.) Walpers spp. unguiculata]. Another trial compared populations in sorghum-sudangrass and in mixtures of sorghum-sudangrass with buckwheat (Fagopyrum esculentum Moench) or pearl millet (Cenchrus americanus (L.) Morrone). Fall armyworm larvae were fed and allowed to develop on different sunn hemp germplasm in a laboratory trial. Results Field populations of fall armyworm were highest on corn, followed by sorghum-sudangrass. Sunn hemp and cowpea had larval populations 70–96% less than on sorghum-sudangrass, suggesting replacement of this cover crop with either plant species might help reduce areawide populations of resident or migratory fall armyworm. Larvae collected from cover crop plots had parasitism levels that averaged 30%, with Chelonus insularis (Hymenoptera: Braconidae) emerging as the most commonly-collected species. Larval feeding on different sunn hemp germplasm lines resulted in no difference in weight gain. Conclusions Replacing sorghum-sudangrass with sunn hemp varieties or germplasm should be acceptable as a replacement cover crop for areawide management of fall armyworm.


2022 ◽  
pp. 237-245
Author(s):  
Shambhu Krishan Lal ◽  
Sahil Mehta ◽  
Sudhir Kumar ◽  
Anil Kumar Singh ◽  
Madan Kumar ◽  
...  

2022 ◽  
pp. 525-545
Author(s):  
Zaki A. Siddiqui ◽  
Manzoor R. Khan ◽  
Lukman Ahamad
Keyword(s):  
Fly Ash ◽  

2022 ◽  
Vol 82 ◽  
Author(s):  
X. Zhou ◽  
K. Shafique ◽  
M. Sajid ◽  
Q. Ali ◽  
E. Khalili ◽  
...  

Abstract The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.


Sign in / Sign up

Export Citation Format

Share Document