Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer based on measurements of wind radial velocity by a micropulsed coherent Doppler lidar. I. Numerical analysis

2020 ◽  
Vol 12 (17) ◽  
pp. 2802
Author(s):  
Igor N. Smalikho ◽  
Viktor A. Banakh

A method for estimation of the turbulent energy dissipation rate from measurements by a conically scanning pulsed coherent Doppler lidar (PCDL), with allowance for the wind transport of turbulent velocity fluctuations, has been developed. The method has been tested in comparative atmospheric experiments with a Stream Line PCDL (Halo Photonics, Brockamin, Worcester, United Kingdom) and a sonic anemometer. It has been demonstrated that the method provides unbiased estimates of the dissipation rate at arbitrarily large ratios of the mean wind velocity to the linear scanning speed.


1980 ◽  
Vol 102 (1) ◽  
pp. 34-40 ◽  
Author(s):  
K. Hanjalic´ ◽  
B. E. Launder

The paper recommends the addition of an extra term to the conventional approximate transport equation for the turbulence energy dissipation rate. The term may be interpreted as emphasizing the role of irrotational deformations in promoting energy transfer across the spectrum or, equivalently, of augmenting the influence of normal strains. Calculations, including the new term, are reported for the plane and round jet, and for several turbulent boundary layers. In the cases considered the addition of the new term significantly improves agreement with experiment.


Sign in / Sign up

Export Citation Format

Share Document