vertical eddy diffusivity
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 1)

H-INDEX

10
(FIVE YEARS 0)

MAUSAM ◽  
2021 ◽  
Vol 72 (4) ◽  
pp. 905-914
Author(s):  
KHALED S. M. ESSA ◽  
H. M. TAHA

On this work, contrast between two analytical and numerical solutions of the advection-diffusion equation has been completed. We  use the method of separation of variables, Hankel transform and Adomian numerical method. Also, Fourier rework, and square complement methods has been used to clear up the combination. The existing version is validated with the information sets acquired at the Egyptian Atomic Energy Authority test of radioactive Iodine-135 (I135) at Inshas in unstable conditions. On this model the wind speed and vertical eddy diffusivity are taken as characteristic of vertical height in the techniques and crosswind eddy diffusivity as function in wind speed. These values of predicted and numerical concentrations are comparing with the observed data graphically and statistically.





2018 ◽  
Vol 75 (9) ◽  
pp. 3159-3168 ◽  
Author(s):  
Jie Tang ◽  
Jun A. Zhang ◽  
Sim D. Aberson ◽  
Frank D. Marks ◽  
Xiaotu Lei

Abstract This study analyzes the fast-response (20 Hz) wind data collected by a multilevel tower during the landfalls of Tropical Storm Lionrock (1006), Typhoon Fanapi (1011), and Typhoon Megi (1015) in 2010. Turbulent momentum fluxes are calculated using the standard eddy-correlation method. Vertical eddy diffusivity Km and mixing length are estimated using the directly measured momentum fluxes and mean-wind profiles. It is found that the momentum flux increases with wind speed at all four levels. The eddy diffusivity calculated using the direct-flux method is compared to that using a theoretical method in which the vertical eddy diffusivity is formulated as a linear function of the friction velocity and height. It is found that below ~60 m, Km can be approximately parameterized using this theoretical method, though this method overestimates Km for higher altitude, indicating that the surface-layer depth is close to 60 m in the tropical cyclones studied here. It is also found that Km at each level varies with wind direction during landfalls: Km estimated based on observations with landward fetch is significantly larger than that estimated using data with seaward fetch. This result suggests that different parameterizations of Km should be used in the boundary layer schemes of numerical models forecasting tropical cyclones over land versus over the ocean.



2018 ◽  
Vol 176 (4) ◽  
pp. 1797-1806 ◽  
Author(s):  
Paulo Henrique Farias Xavier ◽  
Erick Giovani Sperandio Nascimento ◽  
Davidson Martins Moreira


2017 ◽  
Vol 74 (6) ◽  
pp. 1879-1905 ◽  
Author(s):  
Feimin Zhang ◽  
Zhaoxia Pu

Abstract As a result of rapid changes in surface conditions when a landfalling hurricane moves from ocean to land, interactions between the hurricane and surface heat and moisture fluxes become essential components of its evolution and dissipation. With a research version of the Hurricane Weather Research and Forecasting Model (HWRF), this study examines the effects of the vertical eddy diffusivity in the boundary layer on the evolution of three landfalling hurricanes (Dennis, Katrina, and Rita in 2005). Specifically, the parameterization scheme of eddy diffusivity for momentum Km is adjusted with the modification of the mixed-layer velocity scale in HWRF for both stable and unstable conditions. Results show that the change in the Km parameter leads to improved simulations of hurricane track, intensity, and quantitative precipitation against observations during and after landfall, compared to the simulations with the original Km. Further diagnosis shows that, compared to original Km, the modified Km produces stronger vertical mixing in the hurricane boundary layer over land, which tends to stabilize the hurricane boundary layer. Consequently, the simulated landfalling hurricanes attenuate effectively with the modified Km, while they mostly inherit their characteristics over the ocean and decay inefficiently with the original Km.



2017 ◽  
Vol 47 (4) ◽  
pp. 835-853 ◽  
Author(s):  
Achim Randelhoff ◽  
Ilker Fer ◽  
Arild Sundfjord

AbstractEvery summer, intense sea ice melt around the margins of the Arctic pack ice leads to a stratified surface layer, potentially without a traditional surface mixed layer. The associated strengthening of near-surface stratification has important consequences for the redistribution of near-inertial energy, ice–ocean heat fluxes, and vertical replenishment of nutrients required for biological growth. The authors describe the vertical structure of meltwater layers and quantify their seasonal evolution and their effect on turbulent mixing in the oceanic boundary layer by analyzing more than 450 vertical profiles of velocity microstructure in the seasonal ice zone north of Svalbard. The vertical structure of the density profiles can be summarized by an equivalent mixed layer depth hBD, which scales with the depth of the seasonal stratification. As the season progresses and melt rates increase, hBD shoals following a robust pattern, implying stronger vertical stratification, weaker vertical eddy diffusivity, and reduced vertical extent of the mixing layer, which is bounded by hBD. Through most of the seasonal pycnocline, the vertical eddy diffusivity scales inversely with buoyancy frequency (Kρ ∝ N−1). The presence of mobile sea ice alters the magnitude and vertical structure of turbulent mixing primarily through stronger and shallower stratification, and thus vertical eddy diffusivity is greatly reduced under sea ice. This study uses these results to develop a quantitative model of surface layer turbulent mixing during Arctic summer and discuss the impacts of a changing sea ice cover.



2016 ◽  
Vol 46 (6) ◽  
pp. 1751-1768 ◽  
Author(s):  
Stephen M. Chiswell

AbstractWith the relatively recent development of Global Drifter Program (GDP) drifters that measure the near-surface ocean velocity and Argo floats that can be used to derive both the intermediate-ocean (1000 m) velocity and the mean dynamic height of the surface relative to 1000 dbar, there now exists the opportunity to directly observe the mean velocity decomposition of the ocean. This study computes the mean Ekman velocity by subtracting the mean referenced velocity derived from Argo data from the mean surface velocity derived from GDP data. This Ekman velocity is slightly stronger than previous observations and shows a spatial structure consistent with a vertical eddy diffusivity that is linearly dependent on wind stress. To do this analysis, the author has to deal with the fact that GDP drifters often lose their drogues, and a product of this research is validation of the wind-slip correction applied to GDP drifters that have lost their drogues.



Sign in / Sign up

Export Citation Format

Share Document