Lidar observation of aerosol dynamics and acoustic-gravity waves

2015 ◽  
Vol 47 (9) ◽  
pp. 10-22 ◽  
Author(s):  
Yuriy P. Ladikov-Roev ◽  
Oleg K. Cheremnykh ◽  
Alla K. Fedorenko ◽  
Vladimir E. Nabivach

2021 ◽  
Vol 915 ◽  
Author(s):  
Byron Williams ◽  
Usama Kadri ◽  
Ali Abdolali

Abstract


1996 ◽  
Vol 39 (3) ◽  
pp. 224-228
Author(s):  
N. V. Bakhmet'eva ◽  
V. V. Belikovich ◽  
E. A. Benediktov ◽  
V. N. Bubukina ◽  
N. P. Goncharov ◽  
...  

Author(s):  
Oleg Cheremnykh ◽  
Tamaz Kaladze ◽  
Yuriy Selivanov ◽  
Serhiy Cheremnykh

1996 ◽  
Vol 14 (3) ◽  
pp. 304-308 ◽  
Author(s):  
P. Axelsson ◽  
J. Larsson ◽  
L. Stenflo

Abstract. The resonant interaction between three acoustic gravity waves is considered. We improve on the results of previous authors and write the new coupling coefficients in a symmetric form. Particular attention is paid to the low-frequency limit.


1995 ◽  
Vol 18 (2) ◽  
pp. 371-382 ◽  
Author(s):  
H. Y. Alkahby

In this paper we will investigate the effect of Newtonian cooling on the propagation of acoustic-gravity waves in a viscous and thermally conducting isothermal atmosphere for large Prandtl number and for an arbitrary values of Newtonian cooling coefficient. This problem leads to a singular perturbation problem which is solved by matching inner and outer approximations. It is shown that the viscosity creates an absorbing and reflecting layer. Below it the oscillatory process is adiabatic, for small Newtonian cooling coefficient, and above it the solution will decay to constant before it is influenced by the effect of the thermal conductivity. Newtonian cooling is a volume effect and influences mainly the lower adiabatic region, in which it causes attenuation in the amplitude of the wave. Finally it is shown that when Newtonian cooling coefficient goes to infinity it acts directly to eliminate the temperature perturbation associated with the wave and the attenuation factor in the amplitude of the wave. Accordingly the wavelength changes to the one consistent with the Newtonian sound speed. The reflection coefficient and the attenuation factor of the amplitude of the wave are derived for all values of Newtonian cooling coefficient.


Sign in / Sign up

Export Citation Format

Share Document