neutral atmosphere
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 78)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Assoc. Prof. Dr. Ahmet YONETKEN

Abstract The specimens, magnetic properties materials, and microwave characteristics of Ni coated Fe and Co composites were researched by specimens produced by microwave furnace sintering at 1100°C temperature. A uniform nickel deposit on Fe-Co particles was coated previously to sintering by electroless coating deposition procedure. A composite consisting of quaternary additions, a metallic phase, Fe-Co inside of Ni matrix has been prepared under in a neutral atmosphere environment then microwave sintered. X-Ray Diffraction, SEM(Scanning-Electron-Microscope), Empedans Phase Analyzer were utilized to obtain structural data and to determine magnetic and electrical features such as dielectric and conductivity at the temperature range of 25-400C. The ferromagnetic resonance varied from 10 Hz to 1GHz and measurements were employed to characterize the features of the specimens. Empirical of findings obtained for the composition (Fe-%25Co)50Ni at 1100°C recommend that the best conductivity and hardness were obtained with 50Ni addition at a sintering temperature of 1100°C.


2021 ◽  
Author(s):  
Neil P. Hindley ◽  
Neil Cobbett ◽  
David C. Fritts ◽  
Diego Janchez ◽  
Nicholas J. Mitchell ◽  
...  

Abstract. The mesosphere and lower thermosphere (MLT) is a dynamic layer of the earth’s atmosphere. This region marks the interface at which neutral atmosphere dynamics begin to influence the ionosphere and space weather. However, our understanding of this region and our ability to accurately simulate it in global circulation models (GCMs) is limited by a lack of observations, especially in remote locations. To this end, a meteor radar was deployed on the remote mountainous island of South Georgia (54° S, 36° W) in the Southern Ocean from 2016 to 2020. The goal of this study is to use these new measurements to characterise the fundamental dynamics of the MLT above South Georgia including large-scale winds, solar tides, planetary waves (PWs) and mesoscale gravity waves (GWs). We first present an improved method for time-height localisation of radar wind measurements and characterise the large-scale MLT winds. We then explore the amplitudes and phases of the diurnal (24 h), semidiurnal (12 h) and terdiurnal (8 h) solar tides at this latitude. We also explore PW activity and find very large amplitudes up to 30 ms−1 for the quasi-2 day wave in summer and show that the dominant modes of the quasi-5, 10 and 16 day waves are westward W1 and W2. We investigate wind variance due to GWs in the MLT and use a new method to show an east-west tendency of GW variance of up to 20 % during summer and a weaker north-south tendency of 0–5 % during winter. This is contrary to the expected tendency of GW directions in the winter stratosphere below, which is a strong suggestion of secondary GW (2GW) observations in the MLT. Lastly, comparison of radar winds to a climatological Whole Atmosphere Community Climate Model (WACCM) simulation reveals a simulated summertime mesopause and zonal wind shear that occur at altitudes around 10 km lower than observed, and southward winds during winter above 90 km altitude in the model that are not seen in observations. Further, wintertime zonal winds above 85 km altitude are eastward in radar observations but in WACCM they are found to weaken and reverse to westward. Recent studies have linked this discrepancy to the impact of 2GWs on the residual circulation which are not included in WACCM. These measurements therefore provide vital constraints that can guide the development of GCMs as they extend upwards into this important region of the atmosphere.


MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 197-202
Author(s):  
J. K. S. YADAV ◽  
R. K. GIRI ◽  
D. K. MALIK

Global Positioning System (GPS) estimates the total delay in zenith direction by the propagation delay of the neutral atmosphere in presence of water vapour present in the troposphere. This total delay has been treated as a nuisance parameter for many years by the geodesists. The above delay have two parts dry delay and wet delay and known as Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD) respectively. The Integrated Precipitable Water Vapour (IPWV) is estimated through ZWD overlying the receiver at ground-based station. The accuracy of the above said estimates depends on the quality of the predicted satellite orbits, which are not the same for each individual satellite. India Meteorological Department (IMD) is operationally estimating the IPWV on near real time basis at five places and matches fairly well (error ~6.7 mm) with Radisonde (RS) data. This paper examine the effect of International GPS Service (IGS) predicted precise orbits and near real time predicted rapid or broadcast orbits supplied by the Scripps Orbit and Permanent Array Center (SOPAC) on Zenith Total Delay (ZTD) and IPWV estimates by calculating the mean Bias and Root Mean Square Error (RMSE) for ZTD and IPWV in mm for all the five stations. The observed bias for ZTD is almost of the order of less than 1 mm in most cases and RMSE is less than 6 mm. Similarly the bias observed in the case of derived IPWV is almost negligible and RMSE is less than 1 mm.


2021 ◽  
Author(s):  
Angel Navarro Trastoy ◽  
Sebastian Strasser ◽  
Lauri Tuppi ◽  
Maksym Vasiuta ◽  
Markku Poutanen ◽  
...  

Abstract. Neutral atmosphere bends and delays propagation of microwave signals in satellite-based navigation. Weather prediction models can be used to estimate these effects by providing 3-dimensional refraction fields to estimate signal delay in the zenith direction and determine a low-dimensional mapping of this delay to desired azimuth and elevation angles. In this study, a global numerical weather prediction model (OpenIFS licensed for Academic use by ECMWF) is used to generate the refraction fields. The ray-traced slant delays are supplied as such – in contrast to mapping – for an orbit solver (GROOPS software toolkit of TUG) which applies the raw observation method. Here we show that such a close coupling is possible without need for major additional modifications in the solver codes. The main finding here is that the adopted approach provides a very good a priori model for the atmospheric effects on navigation signals, as measured with the midnight discontinuity of GNSS satellite orbits. Our interpretation is that removal of the intermediate mapping step allows to take advantage of the local refraction field asymmetries in the GNSS signal processing. Moreover, the direct coupling helps in identifying deficiencies in the slant delay computation because the modelling errors are not convoluted in the precision-reducing mapping. These conclusions appear robust, despite the relatively small data set of raw code and phase observations covering the core network of 66 ground-based stations of the International GNSS Service over one-month periods in December 2016 and June 2017. More generally, the new configuration enhances our control of geodetic and meteorological aspects of the orbit problem. This is pleasant because we can, for instance, regulate at will the weather model output frequency and increase coverage of spatio-temporal aspects of weather variations. The direct coupling of a weather model in precise GNSS orbit determination presented in this paper provides a unique framework for benefiting even more widely than previously the apparent synergies in space geodesy and meteorology.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1123
Author(s):  
Sergey Leble ◽  
Sergey Vereshchagin ◽  
Nataliya V. Bakhmetieva ◽  
Gennadiy I. Grigoriev

The main result of this work is the estimation of the entropy mode accompanying a wave disturbance, observed at the atmosphere heights range of 90–120 km. The study is the direct continuation and development of recent results on diagnosis of the acoustic wave with the separation on direction of propagation. The estimation of the entropy mode contribution relies upon the measurements of the three dynamic variables (the temperature, density, and vertical velocity perturbations) of the neutral atmosphere measured by the method of the resonant scattering of radio waves on the artificial periodic irregularities of the ionospheric plasma. The measurement of the atmosphere dynamic parameters was carried out on the SURA heating facility. The mathematical foundation of the mode separation algorithm is based on the dynamic projection operators technique. The operators are constructed via the eigenvectors of the coordinate evolution operator of the transformed system of balance equations of the hydro-thermodynamics.


2021 ◽  
Author(s):  
Rieska Mawarni Putri ◽  
Etienne Cheynet ◽  
Charlotte Obhrai ◽  
Jasna Bogunovic Jakobsen

Abstract. Turbulence spectral characteristics for various atmospheric stratifications are studied using the observations from an offshore mast at Vindeby wind farm. Measurement data at 6 m, 18 m and 45 m above the mean sea level are considered. At the lowest height, the normalized power spectral densities of the velocity components show deviations from Monin-Obukhov similarity theory (MOST). A significant co-coherence at the wave spectral peak frequency between the vertical velocity component and the velocity of the sea surface is observed, but only when the significant wave heights exceed 0.9 m. The turbulence spectra at 18 m generally follow MOST and are consistent with the empirical spectra established on the FINO1 offshore platform from an earlier study. The data at 45 m is associated with a high-frequency measurement noise which limits its analysis to strong wind conditions only. The estimated co-coherence of the along-wind component under near-neutral atmosphere matches remarkably well with those at FINO1. The turbulence characteristics estimated from the present dataset are valuable to better understand the structure of turbulence in the marine atmospheric boundary layer and are relevant for load estimations of offshore wind turbines. Yet, a direct application of the results to other offshore or coastal sites should be exercised with caution, since the dataset is collected in shallow waters and at heights lower than the hub height of the current and the future state-of-the-art offshore wind turbines.


2021 ◽  
Author(s):  
Bruno Nava ◽  
Yenca Migoya-Orue ◽  
Anton Kashcheyev ◽  
Beatriz Sánchez-Cano ◽  
Olivier Witasse ◽  
...  

<p>Radio Occultation (RO) is a very powerful technique to probe a planetary atmosphere, in providing vertical density profiles of the neutral atmosphere and ionosphere. The standard method uses a radio link between a spacecraft and an Earth ground station. Nevertheless, the possibility to obtain information about the Martian atmosphere with mutual RO events, using data from NASA Mars Odyssey and Mars Reconnaissance Orbiters (MRO), has been demonstrated by Ao et al. (2015).<br />Taking advantage of two European spacecraft in orbit around Mars, the European Space Agency is currently preparing experiments of mutual RO between Mars Express (MEX) and the ExoMars Trace Gas Orbiter (TGO). In preparation of MEX and TGO data inversion and analysis, a simulation-based strategy has been adopted and an algorithm able to retrieve vertical electron density profiles from Doppler shift measurements has been implemented and validated. Subsequently, in order to test the mentioned algorithm with experimental data, the same three RO events considered in the paper by Ao et al. (2015) have been processed. In particular, for each RO event, having the information about the satellites’ orbit, the (excess) Doppler shift values corresponding to the Mars Odyssey-MRO ray-paths have been converted to bending angles as a function of impact parameter. Then, assuming a spherical symmetry (Fjeldbo et al., 1971) for the ionosphere electron density, the bending angles have been transformed (through Abel integral) to a vertical refractivity profile, which, in turn, has been converted to an ionospheric electron density profile.<br />In this work, the results obtained by the application of the mentioned inversion algorithm to experimental data will be presented, with particular focus on the retrieval of the ionospheric electron density profiles.</p> <p><strong>References</strong></p> <p>Ao, C. O., C. D. Edwards Jr., D. S. Kahan, X. Pi, S. W. Asmar, and A. J. Mannucci (2015), A first demonstration of Mars crosslink occultation measurements, Radio Sci., 50, 997–1007, doi:10.1002/2015RS005750.</p> <p>Fjeldbo, G., A. J. Kliore, and V. R. Eshleman (1971), The neutral atmosphere of Venus as studied with the Mariner V radio occultation<br />experiments, Astron. J., 76, 123–140.</p>


2021 ◽  
Author(s):  
Athena Coustenis ◽  
Donald Jennings ◽  
Richard Achterberg ◽  
Panayotis Lavvas ◽  
Conor Nixon ◽  
...  

<p>Titan’s atmosphere and surface (a complex system) evolve with season, as Titan follows Saturn in its orbit around the Sun for 30 years with an inclination of about 27°. We performed an analysis of spectra acquired by Cassini/CIRS at high resolution covering the range from 600 to 1500 cm-1 since the beginning and until the last flyby of Titan in 2017 and describe the temperature and chemical composition variations ([1-3]. By applying our radiative transfer code (ARTT) to the high-resolution CIRS spectra we study the stratospheric evolution over almost two Titan seasons [1,2], corresponding to the Cassini mission duration. CIRS nadir and limb spectral together show variations in temperature and chemical composition in the stratosphere during the Cassini mission, before and after the Northern Spring Equinox (NSE) and also during one Titan year.</p> <p>Since the 2010 equinox we have thus reported on monitoring of Titan’s stratosphere near the poles and in particular on the observed strong temperature decrease and compositional enhancement above Titan’s southern polar latitudes since 2012 and until 2014 of several trace species, such as complex hydrocarbons and nitriles, which were previously observed only at high northern latitudes. This effect followed the transition of Titan’s seasons from northern winter in 2002 to northern summer in 2017, while at that latter time the southern hemisphere was entering winter.</p> <p>Our data show a continued decrease of the abundances which we first reported to have started in 2015. The 2017 data we have acquired and analyzed here are important because they are the only ones recorded since 2014 close to the south pole in the far-infrared nadir mode at high resolution. A large temperature increase in the southern polar stratosphere (by 10-50 K in the 0.5 mbar-0.05 mbar pressure range) is found and a change in the temperature profile’s shape. The 2017 observations also show a related significant decrease in most of the abundances which must have started sometime between 2014 and 2017 [3]. In our work, we show that the equatorial latitudes remain rather constant throughout the Cassini mission.</p> <p>We have thus shown that the south pole of Titan is now losing its strong enhancement, while the north pole also slowly continues its decrease in gaseous opacities. It would have been interesting to see when this might happen, but the Cassini mission ended in September 2017. Perhaps future ground-based measurements and the Dragonfly mission can pursue this investigation and monitor Titan’s atmosphere to characterize the seasonal events. Our results set constraints on GCM and photochemical models.</p> <p> </p> <p><strong>References:</strong></p> <p> [1] Coustenis et al., 2016, Icarus 270, 409-420</p> <p>[2] Coustenis et al., 2018, Astroph. J., Lett., 854, no2</p> <p>[3] Coustenis et al., 2020. Titan’s neutral atmosphere seasonal variations up to the end of the Cassini mission. Icarus 344, 113413. https://doi.org/10.1016/j.icarus.2019.113413.<button class="clickandreadBtn" title="La ressource a été trouvée dans Unpaywall" name="CLICKANDREADLink"><img src="" width="27" /></button></p>


2021 ◽  
Vol 55 (4) ◽  
pp. 324-334
Author(s):  
V. I. Shematovich

Abstract— For the first time, the calculations of the penetration of protons of the undisturbed solar wind into the daytime atmosphere of Mars due to charge exchange in the extended hydrogen corona (Shematovich et al., 2021) are used allowing us to determine self-consistently the sources of suprathermal oxygen atoms, as well as their kinetics and transport. An additional source of hot oxygen atoms—collisions accompanied by the momentum and energy transfer from the flux of precipitating high-energy hydrogen atoms to atomic oxygen in the upper atmosphere of Mars—was included in the Boltzmann kinetic equation, which was solved with the Monte-Carlo kinetic model. As a result, the population of the hot oxygen corona of Mars has been estimated; and it has been shown that the proton aurorae are accompanied by the atmospheric loss of atomic oxygen, which is evaluated within a range of (3.5–5.8) × 107 cm–2 s–1. It has been shown that the exosphere becomes populated with a substantial amount of suprathermal oxygen atoms with kinetic energies up to the escape energy, 2 eV. The atomic oxygen loss rate caused by a sporadic source in the Martian atmosphere—the precipitation of energetic neutral atoms of hydrogen (H‑ENAs) during proton aurorae at Mars—was estimated by the self-consistent calculations according to a set of the Monte-Carlo kinetic models. These values turned out be comparable to the atomic oxygen loss supported by a regular source—the exothermic photochemical reactions (Groeller et al., 2014; Jakosky et al., 2018). It is currently supposed that the atmospheric loss of Mars due to the impact of the solar wind plasma and, in particular, the fluxes of precipitating high-energy protons and hydrogen atoms during solar flares and coronal mass ejections may play an important role in the loss of the neutral atmosphere on astronomic time scales (Jakosky et al., 2018).


2021 ◽  
Vol 13 (13) ◽  
pp. 2568
Author(s):  
Di Zhang ◽  
Jiming Guo ◽  
Tianye Fang ◽  
Na Wei ◽  
Wensheng Mei ◽  
...  

Tropospheric mapping function plays a vital role in the high precision Global Navigation Satellites Systems (GNSS) data processing for positioning. However, most mapping functions are derived under the assumption that atmospheric refractivity is spherically symmetric. In this paper, the pressure, temperature, and humidity fields of ERA5 data with the highest spatio-temporal resolution available from the European Centre for Medium-range Weather Forecast (ECMWF) were utilized to compute ray-traced delays by the software WHURT. Results reveal the universal asymmetry of the hydrostatic and wet tropospheric delays. To accurately represent these highly variable delays, a new mapping function that depends on elevation and azimuth angles—Tilting Mapping Function (TMF)—was applied. The basic idea is to assume an angle between the tropospheric zenith direction and the geometric zenith direction. Ray-traced delays served as the reference values. TMF coefficients were fitted by Levenberg–Marquardt nonlinear least-squares method. Comparisons demonstrate that the TMF can improve the MF-derived slant delay’s accuracy by 73%, 54% and 29% at the 5° elevation angle, against mapping functions based on the VMF3 concept, without, with a total and separate estimation of gradients, respectively. If all coefficients of a symmetric mapping function are determined together with gradients by a least-square fit at sufficient elevation angles, the accuracy is only 6% lower than TMF. By adopting the b and c coefficients of VMF3, TMF can keep its high accuracy with less computational cost, which could be meaningful for large-scale computing.


Sign in / Sign up

Export Citation Format

Share Document