The behavior of magneto‐acoustic‐gravity waves near the cusp resonance in a lossless, compressible, isothermal, stratified, electrically conducting, and uniformly magnetized atmosphere. I. Mode conversion approach

1989 ◽  
Vol 1 (7) ◽  
pp. 1385-1395 ◽  
Author(s):  
Leon P. J. Kamp
1976 ◽  
Vol 73 (1) ◽  
pp. 125-137 ◽  
Author(s):  
N. Rudraiah ◽  
M. Venkatachalappa ◽  
P. Kandaswamy

Internal Alfvén-acoustic-gravity waves propagating in an isothermal, perfectly electrically conducting, plane stratified, inviscid, compressible atmosphere permeated by a horizontal stratified magnetic field in which the mean horizontal velocity U(z) depends on the height z only exhibit singular properties at the Doppler-shifted frequencies \[ \Omega_{d} = 0,\quad\pm\Omega_A,\quad\pm\Omega_A/(1+M^2)^{\frac{1}{2}},\quad\pm (\Omega_c/2^{\frac{1}{2}})[1+M^2\pm \{(1+M^2)^2 - 4\Omega^2_A/\Omega^2_c\}^{\frac{1}{2}}]^{\frac{1}{2}} \] where ΩA is the Alfvén frequency, Ωc the sonic frequency and M the magnetic Mach number. The phenomenon of critical-layer absorption is studied using the momentum-transport approach of Booker & Bretherton (1967), the wave-packet approach (which is a consequence of the WKBJ approximation) of Bretherton (1966) and the technique involving wave normal curves of McKenzie (1973). The absorption effects are also illustrated, following Acheson (1972), by drawing ray trajectories. We find that the waves are absorbed at the critical levels Ωd = ± ΩA and ± ΩA/(1 + M2)½, and in particular we observe that these levels do not act like valves as observed by Acheson (1972). We also conclude that the combined effect of velocity shear and density and magnetic-field stratification is to increase the number of absorption levels.


2015 ◽  
Vol 47 (9) ◽  
pp. 10-22 ◽  
Author(s):  
Yuriy P. Ladikov-Roev ◽  
Oleg K. Cheremnykh ◽  
Alla K. Fedorenko ◽  
Vladimir E. Nabivach

2021 ◽  
Vol 915 ◽  
Author(s):  
Byron Williams ◽  
Usama Kadri ◽  
Ali Abdolali

Abstract


1996 ◽  
Vol 39 (3) ◽  
pp. 224-228
Author(s):  
N. V. Bakhmet'eva ◽  
V. V. Belikovich ◽  
E. A. Benediktov ◽  
V. N. Bubukina ◽  
N. P. Goncharov ◽  
...  

Author(s):  
Oleg Cheremnykh ◽  
Tamaz Kaladze ◽  
Yuriy Selivanov ◽  
Serhiy Cheremnykh

1996 ◽  
Vol 14 (3) ◽  
pp. 304-308 ◽  
Author(s):  
P. Axelsson ◽  
J. Larsson ◽  
L. Stenflo

Abstract. The resonant interaction between three acoustic gravity waves is considered. We improve on the results of previous authors and write the new coupling coefficients in a symmetric form. Particular attention is paid to the low-frequency limit.


Sign in / Sign up

Export Citation Format

Share Document