Exact Solutions of Stationary Equations of Ideal Magnetohydrodynamics in the Natural Coordinate System

2013 ◽  
Vol 367 ◽  
pp. 286-291
Author(s):  
Ke Wei Zhang ◽  
Yun Qing Zhang

A self-adaptation method for natural-coordinate systems is proposed, in order to automate the selection of natural coordinates for each rigid element of a multibody system. The four-step method includes: First, find out all empty positions, which come from the feature points or vectors of the joints attached to the element, and give equal weight to them; second, delete redundant empty positions and add their weight to the unique one; third, select at most four empty positions which have a maximum total weight and can be occupied by a natural-coordinate system at the same time; fourth, the standard natural-coordinate system on the element can adapt itself to the selected empty positions, leading to an actual natural-coordinate system, which contains twelve rational natural coordinates for the element. The implementation of the method has been achieved on a multibody dynamics and motion analysis platform, InteDyna, with the result that modeling efficiency is enhanced and model quality improved.


Author(s):  
W.-N. Zou ◽  
C.-X. Tang ◽  
E. Pan

The third-order linear piezoelectricity tensor seems to be simpler than the fourth-order linear elasticity one, yet its total number of symmetry types is larger than the latter and the exact number is still inconclusive. In this paper, by means of the irreducible decomposition of the linear piezoelectricity tensor and the multipole representation of the corresponding four deviators, we conclude that there are 15 irreducible piezoelectric symmetry types, and thus further establish their characteristic web tree. By virtue of the notion of mirror symmetry and antisymmetry, we define three indicators with respect to two Euler angles and plot them on a unit disk in order to identify the symmetry type of a linear piezoelectricity tensor measured in an arbitrarily oriented coordinate system. Furthermore, an analytic procedure based on the solved axis-direction sets is also proposed to precisely determine the symmetry type of a linear piezoelectricity tensor and to trace the rotation transformation back to its natural coordinate system.


Sign in / Sign up

Export Citation Format

Share Document