scholarly journals 1.5-Tesla Multiparametric-Magnetic Resonance Imaging for the detection of clinically significant prostate cancer

2017 ◽  
Vol 90 (1) ◽  
pp. 40-48
Author(s):  
Cristian Popita ◽  
Anca Raluca Popita ◽  
Adela Sitar-Taut ◽  
Bogdan Petrut ◽  
Bogdan Fetica ◽  
...  

Background and aims. Multiparametric-magnetic resonance imaging (mp-MRI) is the main imaging modality used for prostate cancer detection. The aim of this study is to evaluate the diagnostic performance of mp-MRI at 1.5-Tesla (1.5-T) for the detection of clinically significant prostate cancer.Methods. In this ethical board approved prospective study, 39 patients with suspected prostate cancer were included. Patients with a history of positive prostate biopsy and patients treated for prostate cancer were excluded. All patients were examined at 1.5-T MRI, before standard transrectal ultrasonography–guided biopsy.Results. The overall sensitivity, specificity, positive predictive value and negative predictive value for mp-MRI were 100%, 73.68%, 80% and 100%, respectively.Conclusion. Our results showed that 1.5 T mp-MRI has a high sensitivity for detection of clinically significant prostate cancer and high negative predictive value in order to rule out significant disease.

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Laurence Klotz ◽  
Giovanni Lughezzani ◽  
Davide Maffei ◽  
Andrea Sanchez ◽  
Jose Gregorio Pereira ◽  
...  

Introduction: High-resolution micro-ultrasound has the capability of imaging prostate cancer based on detecting alterations in ductal anatomy, analogous to multiparametric magnetic resonance imaging (mpMRI). This technology has the potential advantages of relatively low cost, simplicity, and accessibility compared to mpMRI. This multicenter, prospective registry aims to compare the sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of mpMRI with high-resolution micro-ultrasound imaging for the detection of clinically significant prostate cancer. Methods: We included 1040 subjects at 11 sites in seven countries who had prior mpMRI and underwent ExactVu micro-ultrasound-guided biopsy. Biopsies were taken from both mpMRI targets (PI-RADS >3 and micro-ultrasound targets (PRIMUS >3). Systematic biopsies (up to 14 cores) were also performed. Various strategies were used for mpMRI target sampling, including cognitive fusion with micro-ultrasound, separate software-fusion systems, and software-fusion using the micro-ultrasound FusionVu system. Clinically significant cancer was those with Gleason grade group ≥2. Results: Overall, 39.5% were positive for clinically significant prostate cancer. Micro-ultrasound and mpMRI sensitivity was 94% vs. 90%, respectively (p=0.03), and NPV was 85% vs. 77%, respectively. Specificities of micro-ultrasound and MRI were both 22%, with similar PPV (44% vs. 43%). This represents the initial experience with the technology at most of the participating sites and, therefore, incorporates a learning curve. Number of cores, diagnostic strategy, blinding to MRI results, and experience varied between sites. Conclusions: In this initial multicenter registry, micro-ultrasound had comparable or higher sensitivity for clinically significant prostate cancer compared to mpMRI, with similar specificity. Micro-ultrasound is a low-cost, single-session option for prostate screening and targeted biopsy. Further larger-scale studies are required for validation of these findings.


Author(s):  
Sarang M. Ingole ◽  
Rajeev U. Mehta ◽  
Zubair N. Kazi ◽  
Rutuja V. Bhuyar

Abstract Aim In this prospective study, we evaluate the role of multiparametric magnetic resonance imaging (mp-MRI) in the assessment of clinically significant prostate cancer at 1.5 T without endorectal coil (ERC). Materials and Methods Forty-five men with clinical suspicion of prostate cancer (prostate-specific antigen [PSA] level > 4 ng/mL, hard prostate on digital rectal examination, and suspicious area at transrectal ultrasound [TRUS]) were evaluated using the mp-MRI protocol over a period of 24 months. All cases were interpreted using the Prostate Imaging Reporting and Data System (PI-RADS) version 2 guidelines and correlated with histopathology. Statistical Analysis Used A chi-squared test was used for analysis of nominal/categorical variables and receiver operating characteristic (ROC) curve and one-way analysis of variance (ANOVA) test for continuous variables. Results The mean age was 67 years and the mean PSA was 38.2 ng/mL. Eighty percent had prostate cancer and 20% were benign (11% benign prostatic hyperplasia [BPH] and 9% chronic prostatitis). Eighty-six percent of all malignancies were in the peripheral zone. The PI-RADS score for T2-weighted (T2W) imaging showed good sensitivity (81%) but low specificity (67%). The PI-RADS score for diffusion weighted imaging (DWI) with sensitivity of 92% and specificity of 78% had a better accuracy overall than T2W imaging alone. The mean apparent diffusion coefficient (ADC) value (×10–6 mm2/s) was 732 ± 160 in prostate cancer, 1,009 ± 161 in chronic prostatitis, 1,142 ± 82 in BPH, and 663 in a single case of granulomatous prostatitis. Low ADC values (<936) have shown good correlation (area under curve [AUC]: 0.87) with the presence of cancer foci. Inverse correlation was observed between Gleason scores and ADC values. Dynamic contrast-enhanced (DCE) imaging has shown 100% sensitivity/negative predictive value (NPV), but moderate specificity (67%) in predicting malignancy. The final PI-RADS score had 100% sensitivity and NPV with good overall positive predictive value (PPV) of 95%. Conclusions T2W imaging and DWI remain the mainstays in diagnosis of prostate cancer with mp-MRI. DCE-MRI can be a problem-solving tool in case of equivocal findings. Because assessment with mp-MRI can be subjective, use of the newly developed PI-RADS version 2 scoring system is helpful in accurate interpretation.


2021 ◽  
pp. 205141582110237
Author(s):  
Enrico Checcucci ◽  
Sabrina De Cillis ◽  
Daniele Amparore ◽  
Diletta Garrou ◽  
Roberta Aimar ◽  
...  

Objectives: To determine if standard biopsy still has a role in the detection of prostate cancer or clinically significant prostate cancer in biopsy-naive patients with positive multiparametric magnetic resonance imaging. Materials and methods: We extracted, from our prospective maintained fusion biopsy database, patients from March 2014 to December 2018. The detection rate of prostate cancer and clinically significant prostate cancer and complication rate were analysed in a cohort of patients who underwent fusion biopsy alone (group A) or fusion biopsy plus standard biopsy (group B). The International Society of Urological Pathology grade group determined on prostate biopsy with the grade group determined on final pathology among patients who underwent radical prostatectomy were compared. Results: Prostate cancer was found in 249/389 (64.01%) and 215/337 (63.8%) patients in groups A and B, respectively ( P=0.98), while the clinically significant prostate cancer detection rate was 57.8% and 55.1% ( P=0.52). No significant differences in complications were found. No differences in the upgrading rate between biopsy and final pathology finding after radical prostatectomy were recorded. Conclusions: In biopsy-naive patients, with suspected prostate cancer and positive multiparametric magnetic resonance imaging the addition of standard biopsy to fusion biopsy did not increase significantly the detection rate of prostate cancer or clinically significant prostate cancer. Moreover, the rate of upgrading of the cancer grade group between biopsy and final pathology was not affected by the addition of standard biopsy. Level of evidence: Not applicable for this multicentre audit.


Sign in / Sign up

Export Citation Format

Share Document