scholarly journals Asymptotical analysis of Cramer‘s transforms for extrema

2021 ◽  
Vol 47 ◽  
Author(s):  
Algimantas Aksomaitis

Asymptotic of normalized extrema of independent identically distributed random variables is analyzed. Normalization – Cramer‘s transforms [2].

2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


2021 ◽  
Vol 499 (1) ◽  
pp. 124982
Author(s):  
Benjamin Avanzi ◽  
Guillaume Boglioni Beaulieu ◽  
Pierre Lafaye de Micheaux ◽  
Frédéric Ouimet ◽  
Bernard Wong

2012 ◽  
Vol 49 (4) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known to work well in rare event settings, where SN is the sum of independent, identically distributed heavy-tailed random variables X1,…,XN and N is a nonnegative, integer-valued random variable independent of the Xi. In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We also apply our ideas to estimate the quantity E[(SN-u)+].


2003 ◽  
Vol 40 (01) ◽  
pp. 226-241 ◽  
Author(s):  
Sunder Sethuraman

Let X 1, X 2, …, X n be a sequence of independent, identically distributed positive integer random variables with distribution function F. Anderson (1970) proved a variant of the law of large numbers by showing that the sample maximum moves asymptotically on two values if and only if F satisfies a ‘clustering’ condition, In this article, we generalize Anderson's result and show that it is robust by proving that, for any r ≥ 0, the sample maximum and other extremes asymptotically cluster on r + 2 values if and only if Together with previous work which considered other asymptotic properties of these sample extremes, a more detailed asymptotic clustering structure for discrete order statistics is presented.


Sign in / Sign up

Export Citation Format

Share Document