scholarly journals Robust exponential stability of nonlinear impulsive switched systems with time-varying delays

2012 ◽  
Vol 17 (2) ◽  
pp. 210-222 ◽  
Author(s):  
Xiu Liu ◽  
Shouming Zhong ◽  
Xiuyong Ding

This paper deals with a class of uncertain nonlinear impulsive switched systems with time-varying delays. A novel type of piecewise Lyapunov functionals is constructed to derive the exponential stability. This type of functionals can efficiently overcome the impulsive and switching jump of adjacent Lyapunov functionals at impulsive switching times. Based on this, a delay-independent sufficient condition of exponential stability is presented by minimum dwell time. Finally, an illustrative numerical example is given to show the effectiveness of the obtained theoretical results.

2013 ◽  
Vol 479-480 ◽  
pp. 983-988
Author(s):  
Jenq Der Chen ◽  
Chang Hua Lien ◽  
Ker Wei Yu ◽  
Chin Tan Lee ◽  
Ruey Shin Chen ◽  
...  

In this paper, the switching signal design to robust exponential stability for discrete-time switched systems with interval time-varying delay is considered. LMI-based conditions are proposed to guarantee the global exponential stability for such system with parametric perturbations by using a switching signal. The appropriate Lyapunov functionals are used to reduce the conservativeness of systems. Finally, a numerical example is illustrated to show the main results.


2008 ◽  
Vol 18 (03) ◽  
pp. 207-218 ◽  
Author(s):  
MING GAO ◽  
XUYANG LOU ◽  
BAOTONG CUI

This paper considers the robust stability of a class of neural networks with Markovian jumping parameters and time-varying delay. By employing a new Lyapunov–Krasovskii functional, a sufficient condition for the global exponential stability of the delayed Markovian jumping neural networks is established. The proposed condition is also extended to the uncertain cases, which are shown to be the improvement and extension of the existing ones. Finally, the validity of the results are illustrated by an example.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Dadong Tian ◽  
Shutang Liu

This paper studies the exponential stability of switched positive nonlinear systems defined by cooperative and homogeneous vector fields. In order to capture the decay rate of such systems, we first consider the subsystems. A sufficient condition for exponential stability of subsystems with time-varying delays is derived. In particular, for the corresponding delay-free systems, we prove that this sufficient condition is also necessary. Then, we present a sufficient condition of exponential stability under minimum dwell time switching for the switched positive nonlinear systems. Some results in the previous literature are extended. Finally, a numerical example is given to demonstrate the effectiveness of the obtained results.


2004 ◽  
Vol 14 (05) ◽  
pp. 337-345 ◽  
Author(s):  
ZHIGANG ZENG ◽  
DE-SHUANG HUANG ◽  
ZENGFU WANG

This paper presents new theoretical results on global exponential stability of cellular neural networks with time-varying delays. The stability conditions depend on external inputs, connection weights and delays of cellular neural networks. Using these results, global exponential stability of cellular neural networks can be derived, and the estimate for location of equilibrium point can also be obtained. Finally, the simulating results demonstrate the validity and feasibility of our proposed approach.


2007 ◽  
Vol 17 (03) ◽  
pp. 207-218 ◽  
Author(s):  
BAOYONG ZHANG ◽  
SHENGYUAN XU ◽  
YONGMIN LI

This paper considers the problem of robust exponential stability for a class of recurrent neural networks with time-varying delays and parameter uncertainties. The time delays are not necessarily differentiable and the uncertainties are assumed to be time-varying but norm-bounded. Sufficient conditions, which guarantee that the concerned uncertain delayed neural network is robustly, globally, exponentially stable for all admissible parameter uncertainties, are obtained under a weak assumption on the neuron activation functions. These conditions are dependent on the size of the time delay and expressed in terms of linear matrix inequalities. Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed stability results.


Sign in / Sign up

Export Citation Format

Share Document