scholarly journals Next-Generation Sequencing or the Dilemma of Large-Scale Data Analysis: Opportunities, Insights, and Challenges to Translational, Preventive and Personalized Medicine

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Farid Menaa
2014 ◽  
Vol 18 (3) ◽  
pp. 720-721 ◽  
Author(s):  
Manolis Tsiknakis ◽  
Vasilis J. Promponas ◽  
Norbert Graf ◽  
May D. Wang ◽  
Stephen T. C. Wong ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3148
Author(s):  
Youngjun Park ◽  
Dominik Heider ◽  
Anne-Christin Hauschild

The rapid improvement of next-generation sequencing (NGS) technologies and their application in large-scale cohorts in cancer research led to common challenges of big data. It opened a new research area incorporating systems biology and machine learning. As large-scale NGS data accumulated, sophisticated data analysis methods became indispensable. In addition, NGS data have been integrated with systems biology to build better predictive models to determine the characteristics of tumors and tumor subtypes. Therefore, various machine learning algorithms were introduced to identify underlying biological mechanisms. In this work, we review novel technologies developed for NGS data analysis, and we describe how these computational methodologies integrate systems biology and omics data. Subsequently, we discuss how deep neural networks outperform other approaches, the potential of graph neural networks (GNN) in systems biology, and the limitations in NGS biomedical research. To reflect on the various challenges and corresponding computational solutions, we will discuss the following three topics: (i) molecular characteristics, (ii) tumor heterogeneity, and (iii) drug discovery. We conclude that machine learning and network-based approaches can add valuable insights and build highly accurate models. However, a well-informed choice of learning algorithm and biological network information is crucial for the success of each specific research question.


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


Sign in / Sign up

Export Citation Format

Share Document