scholarly journals Approbation of Methods of Application of Wear-Resistant Powder Alloys Based on Cobalt and Nickel with Titanium Carbide

2021 ◽  
Vol 43 (10) ◽  
pp. 1335-1349
Author(s):  
Т. S. Cherepova ◽  
◽  
G. P. Dmytrieva ◽  
Yu. S. Semenova ◽  
◽  
...  
2018 ◽  
Vol 56 (11-12) ◽  
pp. 664-669
Author(s):  
G. P. Dmitrieva ◽  
T. S. Cherepova ◽  
A. I. Dukhota ◽  
V. I. Nichiporenko

2013 ◽  
Vol 52 (5-6) ◽  
pp. 306-313 ◽  
Author(s):  
Yu. G. Tkachenko ◽  
D. Z. Yurchenko ◽  
V. F. Britun ◽  
L. P. Isaeva ◽  
V. T. Varchenko

2015 ◽  
Vol 51 (1) ◽  
pp. 37-43
Author(s):  
H. А. Bahlyuk ◽  
L. M. Apinins’ka ◽  
N. M. Verheles ◽  
N. O. Us’kova ◽  
O. V. Bezdorozhev

Alloy Digest ◽  
1973 ◽  
Vol 22 (4) ◽  

Abstract FERRO-TIC CM is a cemented carbide comprising titanium carbide in a matrix of high-chromium tool steel. It is machinable and heat treatable by conventional means, and is recommended for heavy stamping or forming tools and wear-resistant components. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: TS-253. Producer or source: Chromalloy American Corporation, Sintercast Division.


2021 ◽  
Vol 23 (4) ◽  
pp. 155-166
Author(s):  
Yuri Krutskii ◽  
◽  
Evgeny Maksimovskii ◽  
Roman Petrov ◽  
Olga Netskina ◽  
...  

Introduction. Titanium carbide and diboride are characterized by high values of hardness, chemical inertness and for this reason are widely used in modern technology. This paper provides information on the synthesis of titanium carbide and diboride by carbothermal and carbide-boron methods, respectively, on the use of titanium carbide as an abrasive and in the manufacture of tungsten-free hard alloys, carbide steels, wear-resistant coatings, as well as titanium diboride in the production of cutting tools and ceramics based on boron carbide The aim of this work is to study the processes of synthesis of highly dispersed powders of titanium carbide and diboride, which are promising for the manufacture of cutting tools, wear-resistant coatings, abrasives and ceramics. Research methods. Titanium oxide TiO2, nanofibrous carbon (NFC), and highly dispersed boron carbide were used as reagents for the synthesis of titanium carbide and diboride. Experiments to obtain titanium carbide were carried out in a resistance furnace, and titanium diboride in an induction furnace. X-ray studies of the phase composition of titanium carbide and diboride samples were carried out on an ARL X-TRA diffractometer (Thermo Electron SA). The determination of the content of titanium and impurities in the samples of titanium carbide and diboride was carried out by the X-ray spectral fluorescence method on an ARL-Advant'x analyzer. The total carbon content in the titanium carbide samples was determined on an S-144 device from LECO. The content of boron and other elements for titanium diboride samples was determined by inductively coupled plasma atomic emission spectrometry (ICP AES) on an IRIS Advantage spectrometer (Thermo Jarrell Ash Corporation). The surface morphology and particle sizes of the samples were studied using a Carl Zeiss Sigma scanning electron microscope (Carl Zeiss). The determination of the particle/aggregate size distribution was performed on a MicroSizer 201 laser analyzer (BA Instruments). Results. The paper proposes technological processes for obtaining highly dispersed powders of titanium carbide and diboride. The optimum synthesis temperature for titanium carbide is 2,000…2,100 oC, and for titanium diboride 1,600…1,700 oC. The content of the basic substance is at the level of 97.5…98.0 wt. %. Discussion. A possible mechanism for the formation of titanium carbide and diboride is proposed, which consists in the transfer of vapors of titanium oxides to the surface of solid carbon (synthesis of titanium carbide) and vapors of boron and titanium oxides to the surface of solid carbon (synthesis of titanium diboride). Due to the high purity and dispersion values, the resulting titanium carbide powder can be used as an abrasive material and for the manufacture of tungsten-free hard alloys, carbide steels, wear-resistant coatings, and titanium diboride powder can be used for the preparation of cutting tools and ceramics based on boron carbide.


1977 ◽  
Vol 16 (5) ◽  
pp. 394-397
Author(s):  
N. N. Sereda ◽  
M. S. Koval'chenko ◽  
I. T. Belik ◽  
V. G. Solomenko ◽  
V. V. Uvarov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document