Analysis of the structure of the steam flow in the extraction area of the low-pressure cylinder of a 225 MW steam turbine with an upgraded flow path

2016 ◽  
Vol 19 (1) ◽  
pp. 3-8
Author(s):  
M. Shimanyak ◽  
◽  
A. Gardzilevich ◽  
N. Pashchenko ◽  
I. Nagornyy ◽  
...  
Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 8-15
Author(s):  
Arkadiy E. Zariankin ◽  
◽  
Sergey К. Osipov ◽  
Vladislav I. Krutitsky ◽  
◽  
...  

2021 ◽  
Vol 182 ◽  
pp. 116170
Author(s):  
Xiaodong Zhao ◽  
Ang Li ◽  
Youjun Zhang ◽  
Liqun Ma ◽  
Zhihua Ge ◽  
...  

Author(s):  
Yogini Patel ◽  
Giteshkumar Patel ◽  
Teemu Turunen-Saaresti

With the tremendous role played by steam turbines in power generation cycle, it is essential to understand the flow field of condensing steam flow in a steam turbine to design an energy efficient turbine because condensation at low pressure (LP) turbine introduces extra losses, and erosion in turbine blades. The turbulence has a leading role in condensing phenomena which involve a rapid change of mass, momentum and heat transfer. The paper presents the influence of turbulence modelling on non-equilibrium condensing steam flows in a LP steam turbine stage adopting CFD code. The simulations were conducted using the Eulerian-Eulerian approach, based on Reynolds-averaged Navier-Stokes equations coupled with a two equation turbulence model, which is included with nucleation and droplet growth model for the liquid phase. The SST k-ω model was modified, and the modifications were implemented in the CFD code. First, the performance of the modified model is validated with nozzles and turbine cascade cases. The effect of turbulence modelling on the wet-steam properties and the loss mechanism for the 3D stator-rotor stage is discussed. The presented results show that an accurate computational prediction of condensing steam flow requires the turbulence to be modelled accurately.


Author(s):  
Liang Li ◽  
Zhenping Feng ◽  
Guojun Li

The formation of water droplets in low-pressure steam turbine seriously degrades the performance of the turbine. In order to simulate the wet steam flow with spontaneous condensation, an Eulerian/Eulerian model was developed, in which the Navier-Stokes equations for water vapor flow are coupled with two additional equations describing the formation and the distributions of water droplets. The classical condensation theory was used to model the condensation process. With this model, the three dimensional (3D) steady wet steam flow with spontaneous condensation in three low pressure (LP) stages of an industrial steam turbine was numerically investigated and the results were compared with those in superheated flow. The distribution of pressure, the enthalpy drop, the reaction degree, the outflow velocity and flow angle in each wet steam turbine stage obviously change due to the spontaneous condensation in wet steam flow, compare to those in the superheated flow. The re-distribution of flow parameters in condensing flow leads to that the turbine stages run at ‘off-design’ condition actually, which leads to additional efficiency losses besides the well-known non-equilibrium losses.


2013 ◽  
Vol 341-342 ◽  
pp. 387-390
Author(s):  
Bing Cheng Liu ◽  
Chun Xiao Wang ◽  
De Biao Zhou ◽  
Chang Xin Jin

Nozzle plays an important role in steam turbine design and operation. With the purpose of design a new type low pressure saturated steam turbine, in this paper the model of steam flow inner nozzle was simulated, and the influences of tip angle, expansion section length and throat length on the efficiency of the nozzle were analyzed. Furthermore, the structure and parameter of nozzle were optimized.


2007 ◽  
Vol 54 (4) ◽  
pp. 272-275 ◽  
Author(s):  
N. N. Gudkov ◽  
A. N. Babiev ◽  
V. I. Kirillov ◽  
S. A. Koshelev ◽  
O. N. Petrova ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Shuangshuang Fan ◽  
Ying Wang ◽  
Kun Yao ◽  
Yi Fan ◽  
Jie Wan ◽  
...  

In the operating process of the coal-fired generation during flexible peaking regulation, the primary and secondary water droplets in the steam flowing through the last two stages of the low-pressure cylinder could influence the efficiency and safety of the steam turbine definitely. However, systematic analysis of the movement characteristics of water droplets under low-load conditions is scarcely in the existing research, especially the ultra-low load conditions below 30%. Toward this end, the more novel algebraic slip model and particle transport model mentioned in this paper are used to simulate the primary and secondary water droplets. Taking a 600 MW unit as a research object, the droplets motion characteristics of the last two stages were simulated within four load conditions, including 100, 50, 40, and 30% THA. The results show that the diameter of the primary water droplets is smaller, ranging from 0 to 1 µm, during the flexible peak regulation process of the steam turbine. The deposition is mainly located at the entire moving blades and the trailing edge of the last two stator blades. With the load decreasing, the deposition effect decreases sustainably. And the larger diameters of secondary water droplets range from 10 to 300 µm. The erosion of secondary water droplets in the last stage is more serious than that of the second last stage for different load conditions, and the erosion of the second last stage could be negligible. The pressure face and suction face at 30% blade height of the last stage blade have been eroded most seriously. The lower the load, the worse erosion from the secondary water droplets, which poses a potential threat to the fracture of the last stage blades of the steam turbine. This study provides a certain reference value for the optimal design of steam turbine blades under flexible peak regulation.


Author(s):  
Jo¨rg Starzmann ◽  
M. Schatz ◽  
M. V. Casey ◽  
J. F. Mayer ◽  
Frank Sieverding

Results of numerical investigations of the wet steam flow in a three stage low pressure steam turbine test rig are presented. The test rig is a scale model of a modern steam turbine design and provides flow measurements over a range of operating conditions which are used for detailed comparisons with the numerical results. For the numerical analysis a modern CFD code with user defined models for specific wet steam modelling is used. The effect of different theoretical models for nucleation and droplet growth are examined. It is shown that heterogeneous condensation is highly dependent on steam quality and, in this model turbine with high quality steam, a homogeneous theory appears to be the best choice. The homogeneous theory gives good agreement between the test rig traverse measurements and the numerical results. The differences in the droplet size distribution of the three stage turbine are shown for different loads and modelling assumptions. The different droplet growth models can influence the droplet size by a factor of two. An estimate of the influence of unsteady effects is made by means of an unsteady two-dimensional simulation. The unsteady modelling leads to a shift of nucleation into the next blade row. For the investigated three stage turbine the influence due to wake chopping on the condensation process is weak but to confirm this conclusion further investigations are needed in complete three dimensions and on turbines with more stages.


Sign in / Sign up

Export Citation Format

Share Document