scholarly journals OPERATOR METHOD IN THE PROBLEM OF THE H-POLARIZED WAVE DIFFRACTION BY TWO SEMI-INFINITE GRATINGS PLACED IN THE SAME PLANE

2021 ◽  
Vol 26 (3) ◽  
pp. 239-249
Author(s):  
M. E. Kaliberda ◽  
◽  
L. M. Lytvynenko ◽  
S. A. Pogarsky ◽  
◽  
...  

Purpose: Problem of the H-polarized plane wave diffraction by the structure, which consists of two semi-infinite strip gratings, is considered. The gratings are placed in the same plane. The gap between the gratings is arbitrary. The purpose of the paper is to develop the operator method to the structures, which scattered fields have both discrete and continuous spatial spectra. Design/methodology/approach: In the spectral domain, in the domain of the Fourier transform, the scattered field is expressed in terms of the unknown Fourier amplitude. The field reflected by the considered structure is represented as a sum of two fields of currents on the strips of semi-infinite gratings. The operator equations are obtained for the Fourier amplitudes. These equations use the operators of reflection of semi-infinite gratings, which are supposed to be known. The field scattered by a semi-infinite grating can be represented as a sum of plane and cylindrical waves. The reflection operator of a semi-infinite grating has singularities at the points, which correspond to the propagation constants of plane waves. Consequently, the unknown Fourier amplitudes of the fi eld scattered by the considered structure also have singularities. To eliminate these latter, the regularization procedure has been carried out. As a result of this procedure, the operator equations are reduced to the system of integral equations containing the integrals, which should be understood as the Cauchy principal value and Hadamar finite part integrals. The discretization has been carried out. As a result, the system of linear equations is obtained, which is solved with the use of the iterative procedure. Findings: The operator equations with respect to the Fourier amplitudes of the field scattered by the structure, which consists of two semi-infinite gratings, are obtained. The computational investigation of convergence has been made. The near and far scattered fields are investigated for different values of the grating parameters. Conclusions: The effective algorithm to study the fields scattered by the strip grating, which has both discrete and continuous spatial spectra, is proposed. The developed approach can be an effective instrument in solving a series of problems of antennas and microwave electronics. Key words: semi-infinite grating, operator method, singular integral, hypersingular integral, regularization procedure

2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Xiaozhou Liu ◽  
Jian Ma ◽  
Haibin Wang ◽  
Sha Gao ◽  
Yifeng Li ◽  
...  

AbstractThe scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic characteristics as well as in engineering applications. This paper investigates the scattered field distributions of different incident waves created by elastic cylinders embedded in an elastic isotropic medium. Scattered waves, including longitudinal and transverse waves both inside and outside the cylinder, are described with specific modalities under an incident plane wave. A model with a scatterer embedded in a structural steel matrix and filled with aluminum is developed for comparison with the theoretical solution. The frequency of the plane wave ranged from 235 kHz to 2348 kHz, which corresponds to scaling factors from 0.5 to 5. Scattered field distributions in matrix materials blocked by an elastic cylindrical solid have been obtained by simulation or calculated using existing parameters. The simulation results are in good agreement with the theoretical solution, which supports the correctness of the simulation analysis. Furthermore, ultrasonic phased arrays are used to study scattered fields by changing the characteristics of the incident wave. On this foundation, a partial preliminary study of the scattered field distribution of double cylinders in a solid has been carried out, and the scattered field distribution at a given distance has been found to exhibit particular behaviors at different moments. Further studies on directivities and scattered fields are expected to improve the quantification of scattered images in isotropic solid materials by the phased array technique.


2021 ◽  
Vol 26 (4) ◽  
pp. 350-357
Author(s):  
M. E. Kaliberda ◽  
◽  
L. M. Lytvynenko ◽  
S. A. Pogarsky ◽  
◽  
...  

Purpose: The problem of a plane electromagnetic wave diffraction by an annular slot in the perfectly conducting zero thickness plane is considered. As a dual problem, the problem of diffraction by a perfectly conducting zero thickness ring is also considered. The paper aims at developing the operator method for the axially symmetric structures placed in free space. Design/methodology/approach: The problem is considered in the spectral domain. The scattered field is expressed in terms of unknown Fourier amplitudes (spectral functions). The annular slot is given as a unity of two simple discontinuities, namely of a disk and a circular hole in the plane, which interact with each other. The Fourier amplitude of the scattered field is sought as a sum of two amplitudes, the Fourier amplitude of the field of currents on the disk and Fourier amplitude of the field of currents on the perfectly conducting plane with circular hole. The operator equations are written for these amplitudes, which take into account the electromagnetic coupling of the disk and the hole in the plane. The equations use the reflection operators of a single isolated disk and a single hole in the plane. They are supposed to be known and can be obtained for example by the method of moments.The reflection operators can have singularities. After transformations, the equations are obtained, which are equivalent to the Fredholm integral equations of second kind and they can be solved numerically. Findings: The operator equations relative to the Fourier amplitudes of the field scattered by the discussed structure are obtained. The far zone scattered field for an annular slot and a ring for different values of parameters are studied. Conclusions: The rigorous solution of the problem of the electromagnetic wave diffraction by an annular slot in the plane and by a circular ring is obtained. The problem is reduced to the Fredholm integral equations of second kind. The far field distribution for different parameters is studied. The developed approach is an effective instrument for a number of problems of antenna technique to be solved. Key words: circular hole; disk; annular slot; ring; operator method; diffraction


2021 ◽  
Author(s):  
Leonid I. Goray

Abstract The modified boundary integral equation method (MIM) is considered a rigorous theoretical application for the diffraction of cylindrical waves by arbitrary profiled plane gratings, as well as for the diffraction of plane/non-planar waves by concave/convex gratings. This study investigates two-dimensional (2D) diffraction problems of the filiform source electromagnetic field scattered by a plane lamellar grating and of plane waves scattered by a similar cylindrical-shaped grating. Unlike the problem of plane wave diffraction by a plane grating, the field of a localised source does not satisfy the quasi-periodicity requirement. Fourier transform is used to reduce the solution of the problem of localised source diffraction by the grating in the whole region to the solution of the problem of diffraction inside one Floquet channel. By considering the periodicity of the geometry structure, the problem of Floquet terms for the image can be formulated so that it enables the application of the MIM developed for plane wave diffraction problems. Accounting of the local structure of an incident field enables both the prediction of the corresponding efficiencies and the specification of the bounds within which the approximation of the incident field with plane waves is correct. For 2D diffraction problems of the high-conductive plane grating irradiated by cylindrical waves and the cylindrical high-conductive grating irradiated by plane waves, decompositions in sets of plane waves/sections are investigated. The application of such decomposition, including the dependence on the number of plane waves/sections and radii of the grating and wave front shape, was demonstrated for lamellar, sinusoidal and saw-tooth grating examples in the 0th & –1st orders as well as in the transverse electric and transverse magnetic polarisations. The primary effects of plane wave/section partitions of non-planar wave fronts and curved grating shapes on the exact solutions for 2D and three-dimensional (conical) diffraction problems are discussed.


2020 ◽  
Vol 12 (9) ◽  
pp. 900-905
Author(s):  
Shi-Chun Mao ◽  
Zhen-Sen Wu ◽  
Zhaohui Zhang ◽  
Jiansen Gao ◽  
Lijuan Yang

AbstractA solution to the problem of Gaussian beam scattering by a circular perfect electric conductor coated with eccentrically anisotropic media is presented. The incident Gaussian beam source is expanded as an approximate expression in the simple form with Taylor's series. The transmitted field in the anisotropically coated region is expressed as an infinite summation of Eigen plane waves with different polar angles. The unknown coefficients of the scattered fields are obtained with the aid of the boundary conditions. The addition theorem for cylindrical functions is applied to transfer from the local coordinates to the global ones. The infinite series can be truncated under the prerequisite of achieving the solution convergence. Only the case of transverse-electric polarization is discussed. The similar formulation of transverse-magnetic polarization can be obtained by adopting a similar method. Some numerical results are presented and discussed. The result is in agreement with that available as expected when the eccentric geometry comes to the concentric one.


2017 ◽  
Vol 8 ◽  
pp. 614-626 ◽  
Author(s):  
Martin Fruhnert ◽  
Ivan Fernandez-Corbaton ◽  
Vassilios Yannopapas ◽  
Carsten Rockstuhl

Given an arbitrarily complicated object, it is often difficult to say immediately how it interacts with a specific illumination. Optically small objects, e.g., spheres, can often be modeled as electric dipoles, but which multipole moments are excited for larger particles possessing a much more complicated shape? The T-matrix answers this question, as it contains the entire information about how an object interacts with any electromagnetic illumination. Moreover, a multitude of interesting properties can be derived from the T-matrix such as the scattering cross section for a specific illumination and information about symmetries of the object. Here, we present a method to calculate the T-matrix of an arbitrary object numerically, solely by illuminating it with multiple plane waves and analyzing the scattered fields. Calculating these fields is readily done by widely available tools. The finite element method is particularly advantageous, because it is fast and efficient. We demonstrate the T-matrix calculation at four examples of relevant optical nanostructures currently at the focus of research interest. We show the advantages of the method to obtain useful information, which is hard to access when relying solely on full wave solvers.


2010 ◽  
Vol 43 (4) ◽  
Author(s):  
Nguyen Thi Thu Huyen ◽  
Nguyen Minh Tuan

AbstractThis paper deals with the solvability of systems of linear operator equations in a linear space. Namely, the paper provides necessary and sufficient conditions for the operators under which certain kinds of systems of operator equations are solvable.


Sign in / Sign up

Export Citation Format

Share Document