incident field
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 29)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Jingni Xiao

Abstract We consider corner scattering for the operator ∇ · γ(x)∇ + k2ρ(x) in R2, with γ a positive definite symmetric matrix and ρ a positive scalar function. A corner is referred to one that is on the boundary of the (compact) support of γ(x) − I or ρ(x) − 1, where I stands for the identity matrix. We assume that γ is a scalar function in a small neighborhood of the corner. We show that any admissible incident field will be scattered by such corners, which are allowed to be concave. Moreover, we provide a brief discussion on the existence of non-scattering waves when γ − I has a jump across the corner. In order to prove the results, we construct a new type of complex geometric optics (CGO) solutions.


2022 ◽  
Author(s):  
Ninad Ramanand Jetty

Abstract In the absence of a signal field, vacuum entering through the empty beam splitter port is considered to be the sole contributor to the output noise of conventional two-port homodyne detection. We study a modified configuration that alters the input coefficient of vacuum, predicting an output noise less than that of the conventional configuration. Measurements, however, reveal identical output noise profiles for both the configurations. We explain the observations in terms of the incident field noise alone, and suggest that vacuum does not contribute to homodyne noise or shot-noise. We extend our results to the measurement of squeezed light, with non-ideal detectors.


2021 ◽  
Author(s):  
Leonid I. Goray

Abstract The modified boundary integral equation method (MIM) is considered a rigorous theoretical application for the diffraction of cylindrical waves by arbitrary profiled plane gratings, as well as for the diffraction of plane/non-planar waves by concave/convex gratings. This study investigates two-dimensional (2D) diffraction problems of the filiform source electromagnetic field scattered by a plane lamellar grating and of plane waves scattered by a similar cylindrical-shaped grating. Unlike the problem of plane wave diffraction by a plane grating, the field of a localised source does not satisfy the quasi-periodicity requirement. Fourier transform is used to reduce the solution of the problem of localised source diffraction by the grating in the whole region to the solution of the problem of diffraction inside one Floquet channel. By considering the periodicity of the geometry structure, the problem of Floquet terms for the image can be formulated so that it enables the application of the MIM developed for plane wave diffraction problems. Accounting of the local structure of an incident field enables both the prediction of the corresponding efficiencies and the specification of the bounds within which the approximation of the incident field with plane waves is correct. For 2D diffraction problems of the high-conductive plane grating irradiated by cylindrical waves and the cylindrical high-conductive grating irradiated by plane waves, decompositions in sets of plane waves/sections are investigated. The application of such decomposition, including the dependence on the number of plane waves/sections and radii of the grating and wave front shape, was demonstrated for lamellar, sinusoidal and saw-tooth grating examples in the 0th & –1st orders as well as in the transverse electric and transverse magnetic polarisations. The primary effects of plane wave/section partitions of non-planar wave fronts and curved grating shapes on the exact solutions for 2D and three-dimensional (conical) diffraction problems are discussed.


2021 ◽  
Vol 16 (6) ◽  
Author(s):  
Paris Ang ◽  
George V. Eleftheriades

Author(s):  
V. V. Leont’ev ◽  
M. A. Borodin

Introduction. An analysis of radio wave scattering over random surfaces frequently involves integral equations, which are solved by numerical methods. These methods are feasible only provided limited dimensions of the surface. The requirement of surface limitation leads to the appearance of edge currents, resulting in significant errors when calculating the radar cross section (RCS), particularly for grazing incident angles. The influence of edge currents is reduced by a function tapering the incident field amplitude. This function should satisfy the following requirements: to provide a low suppression of the field along the entire finite-size surface between its edges at the same time as decreasing the incident field amplitude to negligible values when approaching the edges. The incident field under the application of the tampering function should satisfy the wave equation with a minimum error. Although various tapering functions are applied for incident field amplitude (i.e. Gaussian, Thorsos, integral), none of them satisfies the aforementioned requirements.Aim. To suggest a novel function for tapering the amplitude of an electromagnetic wave incident on a perturbed finite-size surface when calculating RCS. In comparison with the known functions, the proposed function must satisfy the entire set of requirements.Materials and methods. A comparison of the proposed tapering function for incident field amplitude with the known tapering functions was performed, including the estimation of the error of satisfying the wave equation. To prove the applicability of the proposed tapering function, a mathematical modeling of the bistatic scatter diagram of a two-dimensional sea-like finite surface with a spatial Elfouhaily spectrum was carried out using Monte Carlo calculations in the Matlab environment.Results. Compared to the known tapering functions, the proposed tapering function satisfies the entire set of requirements. The results of mathematical modeling showed that the proposed function for tapering the incident field amplitude provides acceptable accuracy of estimating the RCS of finite-size random surfaces.Conclusion. A novel function for tapering the incident field amplitude was derived. This function reduces the influence of edge currents on the accuracy of RCS estimation of two-dimensional finite-size random surfaces, thus being instrumental for solving scattering problems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sajjad Taravati ◽  
George V. Eleftheriades

AbstractNonreciprocal radiation refers to electromagnetic wave radiation in which a structure provides different responses under the change of the direction of the incident field. Modern wireless telecommunication systems demand versatile apparatuses which are capable of full-duplex nonreciprocal wave processing and amplification, especially in the reflective state. To realize such a functionality, we propose an architecture in which a chain of series cascaded radiating patches are integrated with nonreciprocal phase shifters, providing an original and efficient apparatus for full-duplex reflective beamsteering. Such an ultrathin reflective metasurface can provide directive and diverse radiation beams, large wave amplification, steerable beams by simply changing the bias of the gradient active nonmagnetic nonreciprocal phase shifters, and is immune to undesired time harmonics. Having accomplished all these functionalities in the reflective state, the metasurface represents a conspicuous apparatus for efficient, controllable and programmable wave engineering.


Author(s):  
S.L. Vnotchenko ◽  
◽  
V.G. Konev ◽  
E.I. Lavretski ◽  
V.S. Chernyshov ◽  
...  

Calculation of cross-couplings between the tracking system axes in TM01-mode monopulse antenna with respect to ellipticity coefficients of a receiving antenna and the incident field is performed. Pointing correction paths are given for diverse values of ellipticity coefficients and angular directions of the incident wave. Acceptable values of ellipticity coefficients for the robust performance of tracking system are determined.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 729
Author(s):  
Maria Antonia Maisto

In this paper, the problem to estimate the on-axis resolution in creating a desired field profile by radiation of an aperture A is addressed. The latter applies in both diffractive optics and antenna synthesis. This is because the ‘aperture theory’, A can schematize a source, for example, an antenna or a lens illuminated by an incident field radiating a significant field only on the same aperture. The analysis refers to a customary axicon geometry consisting of a circle aperture transverse to the observation domain. The aim was to find a resolution formula allowing to highlight the impact of aperture geometrical parameters for configurations that are below the Fresnel approximation. The results show that the aperture cannot approximate the target field with the same level of accuracy along with the observation domain. In particular, near the aperture, smaller details can be retrieved and as the distance increases this ability degrades.


Sign in / Sign up

Export Citation Format

Share Document