scholarly journals Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

2004 ◽  
Vol 124 (12) ◽  
pp. 1173-1181 ◽  
Author(s):  
Katsuji Shinohara ◽  
Kurato Shinhatsubo ◽  
Kenichi Iimori ◽  
Kichiro Yamamoto ◽  
Takamichi Saruban ◽  
...  
2006 ◽  
Vol 154 (2) ◽  
pp. 58-67
Author(s):  
Katsuji Shinohara ◽  
Kurato Shinhatsubo ◽  
Kenichi Iimori ◽  
Kichiro Yamamoto ◽  
Takamichi Saruban ◽  
...  

2019 ◽  
Vol 52 (3-4) ◽  
pp. 169-182 ◽  
Author(s):  
R Sitharthan ◽  
CK Sundarabalan ◽  
KR Devabalaji ◽  
T Yuvaraj ◽  
A Mohamed Imran

In this literature, a new automated control strategy has been developed to manage the power supply from the wind power generation system to the load. The main objective of this research work is to develop a fuzzy logic–based pitch angle control and to develop a static transfer switch to make power balance between the wind power generation system and the loads. The power management control system is a progression of logic expressions, designed based on generating power and load power requirement. The outcome of this work targets at an improved power production, active and reactive power compensation and ensures system load constraints. To validate the proposed control strategy, a detailed simulation study is carried out on a 9-MW wind farm simulation simulated in MATLAB/Simulink environment.


2011 ◽  
Vol 52-54 ◽  
pp. 1911-1916
Author(s):  
You Gui Guo ◽  
Ping Zeng ◽  
Li Juan Li ◽  
Jie Qiong Zhu ◽  
Wen Lang Deng ◽  
...  

Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given. Then the control strategy of grid side converter-based wind power generation system is given in detail mainly including ABH CC and PI controllers of DC-link voltage, active power, reactive power. Finally the simulation model is set up which consists of power circuits, such as the grid side converter, LCL filter, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system.


2011 ◽  
Vol 52-54 ◽  
pp. 1917-1922
Author(s):  
You Gui Guo ◽  
Ping Zeng ◽  
Li Juan Li ◽  
Jie Qiong Zhu ◽  
Wen Lang Deng ◽  
...  

Virtual flux oriented direct power control (VFDPC) is combined space vector modulation (SVM) with PI of DC-link voltage, active power and reactive power to control the grid side converter in wind power generation system in this paper. VFDPC has reached good performances with PLL (phase lock loop). First the mathematical models of grid side converter, LCL filter and phase lock loop are given. Then the control strategy of grid side converter-based wind power generation system is given in detail. Finally the simulation model is modeled consisting of power circuits, such as the grid side converter, LCL filter, transformer grid, and control parts, such as PI controllers of DC-link voltage, active power, reactive power, and SVM, and so on. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system.


2005 ◽  
Vol 125 (11) ◽  
pp. 1016-1021 ◽  
Author(s):  
Yoshihisa Sato ◽  
Naotsugu Yoshida ◽  
Ryuichi Shimada

Sign in / Sign up

Export Citation Format

Share Document