Influence of Geomagnetically Induced Currents on Electric Power Grids

2018 ◽  
Vol 138 (1) ◽  
pp. 33-36
Author(s):  
Shinichi WATARI
2019 ◽  
Vol 41 (1) ◽  
pp. 115-166 ◽  
Author(s):  
Anna Kelbert

AbstractGeomagnetic disturbances cause perturbations in the Earth’s magnetic field which, by the principle of electromagnetic induction, in turn cause electric currents to flow in the Earth. These geomagnetically induced currents (GICs) also enter man-made technological conductors that are grounded; notably, telegraph systems, submarine cables and pipelines, and, perhaps most significantly, electric power grids, where transformer groundings at power grid substations serve as entry points for GICs. The strength of the GICs that flow through a transformer depends on multiple factors, including the spatiotemporal signature of the geomagnetic disturbance, the geometry and specifications of the power grid, and the electrical conductivity structure of the Earth’s subsurface. Strong GICs are hazardous to power grids and other infrastructure; for example, they can severely damage transformers and thereby cause extensive blackouts. Extreme space weather is therefore hazardous to man-made technologies. The phenomena of extreme geomagnetic disturbances, including storms and substorms, and their effects on human activity are commonly referred to as geomagnetic hazards. Here, we provide a review of relevant GIC studies from around the world and describe their common and unique features, while focusing especially on the effects that the Earth’s electrical conductivity has on the GICs flowing in the electric power grids.


2021 ◽  
Vol 7 ◽  
pp. 762-777
Author(s):  
Qinglong Meng ◽  
Yang Li ◽  
Xiaoxiao Ren ◽  
Chengyan Xiong ◽  
Wenqiang Wang ◽  
...  

2011 ◽  
Vol 26 (4) ◽  
pp. 1905-1916 ◽  
Author(s):  
Francisco Damasceno Freitas ◽  
Nelson Martins ◽  
Sergio Luis Varricchio ◽  
Joost Rommes ◽  
Franklin C. Veliz

2013 ◽  
Vol 8 (S300) ◽  
pp. 500-501
Author(s):  
Larisa Trichtchenko

AbstractCoronal mass ejections (CME) and associated interplanetary-propagated solar wind disturbances are the established causes of the geomagnetic storms which, in turn, create the most hazardous impacts on power grids. These impacts are due to the large geomagnetically induced currents (GIC) associated with variations of geomagnetic field during storms, which, flowing through the transformer windings, cause extra magnetisation. That can lead to transformer saturation and, in extreme cases, can result in power blackouts. Thus, it is of practical importance to study the solar causes of the large space weather events. This paper presents the example of the space weather chain for the event of 5-6 November 2001 and a table providing complete overview of the largest solar events during solar cycle 23 with their subsequent effects on interplanetary medium and on the ground. This compact overview can be used as guidance for investigations of the solar causes and their predictions, which has a practical importance in everyday life.


Sign in / Sign up

Export Citation Format

Share Document