Control and Protection Scheme of VSC HVDC Transmission System having the Ability to Control DC Fault Current

2013 ◽  
Vol 133 (5) ◽  
pp. 449-456 ◽  
Author(s):  
Toshiaki Kikuma ◽  
Kiyoshi Takenaka ◽  
Masahiro Takasaki ◽  
Tomoyuki Fukushima ◽  
Takanori Uchiumi
Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


Author(s):  
Satyavarta Kumar Prince ◽  
Shaik Affijulla ◽  
Gayadhar Panda

Abstract The integration of distributed generation (DG) units into a DC microgrid presents a research challenge in terms of a proper protection scheme. The network must be protected due to the sudden change in the amplitude and direction of the fault current. In addition, due to the absence of zero-crossing of the DC fault current, protecting the network from these potential faults is a challenging task. The DC fault can be diagnosed using an appropriate detection technique after monitoring the movement of current. In this paper, a least-square estimation (LSE) technique has been adopted, which has been proven to be able to detect the faulty line strongly, so that the fault is detected by estimated parameters. This fault detection technique has been evaluated on six-lines, with faults analyzed on each line. The six-bus DC microgrid is designed in PSS®SINCAL, and the proposed method is simulated in MATLAB. Two sets of simulations are designed to validate the reliability of the proposed method: (1) pole–ground (P–G) and (2) pole–pole (P–P) fault estimation of inductance and capacitance (C) in a separate line. Simulation results show that the proposed methodology can able to accurately detect (i.e., 95% accuracy) the faulty line in the DC microgrid with respect to designated ‘trip’ value. Thus, the proposed fault detection methodology can be utilized for protection of modern DC microgrids. An experimental PV-battery-load-based fault detection technique has been developed in the laboratory and tested under P–P fault conditions in order to validate the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document