scholarly journals Two-Dimensional Simulation of Nonequilibrium Disk MHD Generator Considering Boundary Layer

1992 ◽  
Vol 112 (6) ◽  
pp. 507-515
Author(s):  
Yoshitaka Inui ◽  
Motoo Ishikawa ◽  
Juro Umoto
1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


1991 ◽  
Vol 111 (6) ◽  
pp. 675-682
Author(s):  
Yoshitaka Inui ◽  
Takehisa Hara ◽  
Motoo Ishikawa ◽  
Juro Umoto

1982 ◽  
Vol 17 (1) ◽  
pp. 55-62
Author(s):  
V. A. Bityurin ◽  
V. A. Zhelnin ◽  
G. A. Lyubimov ◽  
S. A. Medin

2018 ◽  
Author(s):  
Haibo Li ◽  
Maocheng Tian ◽  
Xiaohang Qu ◽  
Min Wei

1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


Sign in / Sign up

Export Citation Format

Share Document