Identifying Handwork with Machine Learning Data Sets from Sensors Built into Gloves

2021 ◽  
Vol 141 (8) ◽  
pp. 284-291
Author(s):  
Ryohei Matsui ◽  
Iwao Tanuma ◽  
Ryotaro Kawahara ◽  
Naoko Ushio ◽  
Hiroyuki Yoshimoto ◽  
...  
Author(s):  
Paul Rippon ◽  
Kerrie Mengersen

Learning algorithms are central to pattern recognition, artificial intelligence, machine learning, data mining, and statistical learning. The term often implies analysis of large and complex data sets with minimal human intervention. Bayesian learning has been variously described as a method of updating opinion based on new experience, updating parameters of a process model based on data, modelling and analysis of complex phenomena using multiple sources of information, posterior probabilistic expectation, and so on. In all of these guises, it has exploded in popularity over recent years.


Author(s):  
Paul Rippon ◽  
Kerrie Mengersen

Learning algorithms are central to pattern recognition, artificial intelligence, machine learning, data mining, and statistical learning. The term often implies analysis of large and complex data sets with minimal human intervention. Bayesian learning has been variously described as a method of updating opinion based on new experience, updating parameters of a process model based on data, modelling and analysis of complex phenomena using multiple sources of information, posterior probabilistic expectation, and so on. In all of these guises, it has exploded in popularity over recent years.


2008 ◽  
pp. 1877-1887
Author(s):  
Desheng Wu ◽  
David L. Olson

The technique for order preference by similarity to ideal solution (TOPSIS) is a technique that can consider any number of measures, seeking to identify solutions close to an ideal and far from a nadir solution. TOPSIS has traditionally been applied in multiple criteria decision analysis. In this paper we propose an approach to develop a TOPSIS classifier. We demonstrate its use in credit scoring, providing a way to deal with large sets of data using machine learning. Data sets often contain many potential explanatory variables, some preferably minimized, some preferably maximized. Results are favorable by a comparison with traditional data mining techniques of decision trees. Proposed models are validated using Mont Carlo simulation.


2021 ◽  
Vol 34 (2) ◽  
pp. 541-549 ◽  
Author(s):  
Leihong Wu ◽  
Ruili Huang ◽  
Igor V. Tetko ◽  
Zhonghua Xia ◽  
Joshua Xu ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2433
Author(s):  
Shu Yang ◽  
Fengchao Peng ◽  
Sibylle von Löwis ◽  
Guðrún Nína Petersen ◽  
David Christian Finger

Doppler lidars are used worldwide for wind monitoring and recently also for the detection of aerosols. Automatic algorithms that classify the lidar signals retrieved from lidar measurements are very useful for the users. In this study, we explore the value of machine learning to classify backscattered signals from Doppler lidars using data from Iceland. We combined supervised and unsupervised machine learning algorithms with conventional lidar data processing methods and trained two models to filter noise signals and classify Doppler lidar observations into different classes, including clouds, aerosols and rain. The results reveal a high accuracy for noise identification and aerosols and clouds classification. However, precipitation detection is underestimated. The method was tested on data sets from two instruments during different weather conditions, including three dust storms during the summer of 2019. Our results reveal that this method can provide an efficient, accurate and real-time classification of lidar measurements. Accordingly, we conclude that machine learning can open new opportunities for lidar data end-users, such as aviation safety operators, to monitor dust in the vicinity of airports.


Sign in / Sign up

Export Citation Format

Share Document