High-Frequency Ventilation and Tracheal Injuries

PEDIATRICS ◽  
1986 ◽  
Vol 77 (4) ◽  
pp. 608-613
Author(s):  
Mark C. Mammel ◽  
Janice P. Ophoven ◽  
Patrick K. Lewallen ◽  
Margaret J. Gordon ◽  
Marylyn C. Sutton ◽  
...  

Recent reports linking serious tracheal injuries to various forms of high-frequency ventilation prompted this study. We compared the tracheal histopathology seen following standard-frequency, conventional mechanical ventilation with that seen following high-frequency, conventional mechanical ventilation, and two different forms of high-frequency jet ventilation. Twenty-six adult cats were examined. Each was mechanically ventilated for 16 hours. Seven received standard-frequency, conventional mechanical ventilation at 20 breaths per minute. Seven received high-frequency, conventional mechanical ventilation at 150 breaths per minute. Six received high-frequency jet ventilation at 250 breaths per minute via the Instrument Development Corporation VS600 jet ventilator (IDC). Six received high-frequency jet ventilation at 400 breaths per minute via the Bunnell Life Pulse jet ventilator (BLP). A semiquantitative histopathologic scoring system graded tracheal tissue changes. All forms of high-frequency ventilation produced significant inflammation (erosion, necrosis, and polymorphonuclear leukocyte infiltration) in the trachea in the region of the endotracheal tube tip. Conventional mechanical ventilation produced less histopathology than any form of high-frequency ventilation. Of all of the ventilators examined, the BLP, the ventilator operating at the fastest rate, produced the greatest loss of surface cilia and depletion of intracellular mucus. IDC high-frequency jet ventilation and high-frequency, conventional mechanical ventilation produced nearly identical histologic injuries. In this study, significant tracheal damage occurred with all forms of high-frequency ventilation. The tracheal damage seen with high-frequency, conventional mechanical ventilation suggests that ventilator frequency, not delivery system, may be responsible for the injuries.

PEDIATRICS ◽  
1987 ◽  
Vol 79 (1) ◽  
pp. 162-164
Author(s):  
THOMAS E. WISWELL ◽  
REESE H. CLARK ◽  
J. DEVN CORNISH

To the Editor.— We read with interest the study of Mammel et al.1 However, we wish to address several aspects of the report regarding the design of the investigation, their interpretation of the results and of other reports, and the conclusions they make. First, we take exception to the title itself. Unfortunately, many pediatricians and neonatologists do not make any distinction between the various types of nonconventional, high-frequency ventilators. High-frequency ventilation is a generic term encompassing several very different modalities of ventilation including high-frequency positive pressure ventilation, high-frequency flow interruption, high-frequency jet ventilation, and high-frequency oscillatory ventilation.


PEDIATRICS ◽  
1991 ◽  
Vol 87 (4) ◽  
pp. 487-493
Author(s):  
Soraya Abbasi ◽  
Vinod K. Bhutani ◽  
Alan R. Spitzer ◽  
William W. Fox

Pulmonary mechanics were measured in 43 preterm neonates (mean ± SD values of birth weight 1.2 ± 0.3 kg, gestational age 30 ± 2 weeks) with respiratory failure who were concurrently randomly assigned to receive conventional mechanical ventilation (n = 22) or high-frequency ventilation (n = 21). The incidence of bronchopulmonary dysplasia was comparable in the two groups (high-frequency ventilation 57%, conventional ventilation 50%). Pulmonary functions were determined at 0.5, 1.0, 2.0, and 4.0 weeks postnatal ages. Data were collected while subjects were in a nonsedated state during spontaneous breathing. These sequential data show similar patterns of change in pulmonary mechanics during high-frequency ventilation and conventional mechanical ventilation irrespective of gestational age, birth weight stratification, or bronchopulmonary dysplasia. There was no significant difference in the pulmonary functions with either mode of ventilation during the acute phase (≤4 weeks) of respiratory disease. When evaluated by the clinical diagnosis of bronchopulmonary dysplasia, the pulmonary data suggested a less severe dysfunction in the high-frequency oscillatory ventilation-treated bronchopulmonary dysplasia group compared with the conventional mechanical ventilation-treated group. These results indicate that high-frequency oscillatory ventilation in preterm neonates does not reduce the risk of acute lung injury; however, the magnitude of the pulmonary dysfunction in the first 2 weeks of life merits a reevaluation.


1984 ◽  
Vol 56 (2) ◽  
pp. 454-458 ◽  
Author(s):  
V. Brusasco ◽  
T. J. Knopp ◽  
E. R. Schmid ◽  
K. Rehder

The efficiency of oxygenation and the uniformity of the distribution of regional ventilation (Vr) to regional perfusion (Qr) along the vertical and horizontal axes was compared in anesthetized dogs between conventional mechanical ventilation (CMV) and high-frequency ventilation (HFV) at 5.8, 15.0, and 29.8 Hz. Both CMV and HFV were adjusted to result in similar arterial CO2 tensions. The distribution of Vr/Qr during HFV at 5.8 Hz tended to be more uniform than during HFV at 15.0 or 29.8 Hz or during CMV. Consistent with this observation, arterial O2 tension (PaO2) tended to be higher during HFV at 5.8 Hz (means +/- SD, 90 +/- 9 Torr) than during HFV at 15.0 Hz (83 +/- 9 Torr) or 29.8 Hz (78 +/- 10 Torr); PaO2 was significantly higher during HFV at 5.8 Hz than during CMV (83 +/- 7 Torr).


Sign in / Sign up

Export Citation Format

Share Document