Respiratory Distress Syndrome
Recently Published Documents





2021 ◽  
Vol 12 ◽  
Lorenzo Ball ◽  
Yuda Sutherasan ◽  
Martina Fiorito ◽  
Antonella Dall'Orto ◽  
Lorenzo Maiello ◽  

Background: Variable pressure support ventilation (vPSV) is an assisted ventilation mode that varies the level of pressure support on a breath-by-breath basis to restore the physiological variability of breathing activity. We aimed to compare the effects of vPSV at different levels of variability and pressure support (ΔPS) in patients with acute respiratory distress syndrome (ARDS).Methods: This study was a crossover randomized clinical trial. We included patients with mild to moderate ARDS already ventilated in conventional pressure support ventilation (PSV). The study consisted of two blocks of interventions, and variability during vPSV was set as the coefficient of variation of the ΔPS level. In the first block, the effects of three levels of variability were tested at constant ΔPS: 0% (PSV0%, conventional PSV), 15% (vPSV15%), and 30% (vPSV30%). In the second block, two levels of variability (0% and variability set to achieve ±5 cmH2O variability) were tested at two ΔPS levels (baseline ΔPS and ΔPS reduced by 5 cmH2O from baseline). The following four ventilation strategies were tested in the second block: PSV with baseline ΔPS and 0% variability (PSVBL) or ±5 cmH2O variability (vPSVBL), PSV with ΔPS reduced by 5 cmH2O and 0% variability (PSV−5) or ±5 cmH2O variability (vPSV−5). Outcomes included gas exchange, respiratory mechanics, and patient-ventilator asynchronies.Results: The study enrolled 20 patients. In the first block of interventions, oxygenation and respiratory mechanics parameters did not differ between vPSV15% and vPSV30% compared with PSV0%. The variability of tidal volume (VT) was higher with vPSV15% and vPSV30% compared with PSV0%. The incidence of asynchronies and the variability of transpulmonary pressure (PL) were higher with vPSV30% compared with PSV0%. In the second block of interventions, different levels of pressure support with and without variability did not change oxygenation. The variability of VT and PL was higher with vPSV−5 compared with PSV−5, but not with vPSVBL compared with PSVBL.Conclusion: In patients with mild-moderate ARDS, the addition of variability did not improve oxygenation at different pressure support levels. Moreover, high variability levels were associated with worse patient-ventilator synchrony.Clinical Trial, identifier: NCT01683669.

2021 ◽  
Vol 10 (21) ◽  
pp. 4839
Nicolas Dognon ◽  
Alexandre Gaudet ◽  
Erika Parmentier-Decrucq ◽  
Sylvain Normandin ◽  
André Vincentelli ◽  

We aimed to compare the outcomes of patients under veno-venous extracorporeal membrane oxygenation (V-V ECMO) for COVID-19-Acute Respiratory Distress Syndrome (CARDS) between the first and the second wave. From 1 March 2020 to 30 November 2020, fifty patients requiring a V-V ECMO support for CARDS were included. Patient demographics, pre-ECMO, and day one, three, and seven on-ECMO data and outcomes were collected. The 90-day mortality was 11% higher during the second wave (18/26 (69%)) compared to the first wave (14/24 (58%) (p = 0.423). During the second wave, all of the patients were given steroids compared to 16.7% during the first wave (p < 0.001). The second wave’s patients had been on non-invasive ventilation support for a longer period than in the first wave, with the median time from ICU admission to ECMO implantation being significantly higher (14 (11–20) vs. 7.7 (5–12) days; p < 0.001). Mechanical properties of the lung were worsened in the second wave’s CARDS patients before ECMO implantation (median static compliance 20 (16–26) vs. 29 (25–37) mL/cmH2O; p < 0.001) and during ECMO days one, three, and seven. More bacterial co-infections before implantation and under ECMO were documented in the second wave group. Despite a better evidence-driven critical care management, we depicted fewer encouraging outcomes during the second wave.

2021 ◽  
Vol 12 ◽  
Zachary M. Holliday ◽  
Alexander P. Earhart ◽  
Mohammed M. Alnijoumi ◽  
Armin Krvavac ◽  
Lee-Ann H. Allen ◽  

BackgroundThe most severe cases of Coronavirus-Disease-2019 (COVID-19) develop into Acute Respiratory Distress Syndrome (ARDS). It has been proposed that oxygenation may be inhibited by extracellular deoxyribonucleic acid (DNA) in the form of neutrophil extracellular traps (NETs). Dornase alfa (Pulmozyme, Genentech) is recombinant human deoxyribonuclease I that acts as a mucolytic by cleaving and degrading extracellular DNA. We performed a pilot study to evaluate the effects of dornase alfa in patients with ARDS secondary to COVID-19.MethodsWe performed a pilot, non-randomized, case-controlled clinical trial of inhaled dornase for patients who developed ARDS secondary to COVID-19 pneumonia.ResultsImprovement in arterial oxygen saturation to inhaled fraction of oxygen ratio (PaO2/FiO2) was noted in the treatment group compared to control at day 2 (95% CI, 2.96 to 95.66, P-value = 0.038), as well as in static lung compliance at days 3 through 5 (95% CI, 4.8 to 19.1 mL/cmH2O, 2.7 to 16.5 mL/cmH2O, and 5.3 to 19.2 mL/cmH2O, respectively). These effects were not sustained at 14 days. A reduction in bronchoalveolar lavage fluid (BALF) myeloperoxidase-DNA (DNA : MPO) complexes (95% CI, -14.7 to -1.32, P-value = 0.01) was observed after therapy with dornase alfa.ConclusionTreatment with dornase alfa was associated with improved oxygenation and decreased DNA : MPO complexes in BALF. The positive effects, however, were limited to the time of drug delivery. These data suggest that degradation of extracellular DNA associated with NETs or other structures by inhaled dornase alfa can be beneficial. We propose a more extensive clinical trial is warranted.Clinical Trial, Identifier: NCT04402970.

2021 ◽  
Vol 7 (10) ◽  
pp. 881
David Ranhel ◽  
Ana Ribeiro ◽  
Judite Batista ◽  
Maria Pessanha ◽  
Elisabete Cristovam ◽  

Invasive pulmonary aspergillosis (IPA) has become a recognizable complication in coronavirus disease 2019 (COVID-19) patients admitted to intensive care units (ICUs). Alveolar damage in the context of acute respiratory distress syndrome (ARDS) appears to be the culprit in facilitating fungal invasion in COVID-19 patients, leading to a COVID-19-associated pulmonary aspergillosis (CAPA) phenomenon. From November 2020 to 15 February 2021, 248 COVID-19 patients were admitted to our ICUs, of whom ten patients (4% incidence) were classified as either probable (six) or possible (four) CAPA cases. Seven patients had positive cultural results: Aspergillus fumigatus sensu stricto (five), A. terreus sensu stricto (one), and A. welwitschiae (one). Five patients had positive bronchoalveolar lavage (BAL) and galactomannan (GM), and two patients had both positive cultural and GM criteria. All but two patients received voriconazole. Mortality rate was 30%. Strict interpretation of classic IPA definition would have resulted in eight overlooked CAPA cases. Broader diagnostic criteria are essential in this context, even though differentiation between Aspergillus colonization and invasive disease might be more challenging. Herein, we aim to raise awareness of CAPA in view of its potential detrimental outcome, emphasizing the relevance of a low threshold for screening and early antifungal treatment in ARDS patients.

Intervirology ◽  
2021 ◽  
Hamidreza Abbasi ◽  
Hadi Razavi Nikoo ◽  
Ali Fallah ◽  
Azadeh Mohammad-Hasani ◽  
Abasalt Hosseinzadeh Colagar ◽  

Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is currently the most important etiological agent of acute respiratory distress syndrome (ARDS) with millions of infections and deaths in the last two years worldwide. Several reasons and parameters are responsible for the difficult management of coronavirus disease-2019 (COVID-19) patients; the first is virus behavioral factors such as high transmission rate, and the different molecular and cellular mechanisms of pathogenesis remain a matter of controversy, is another factor. Summary: In the present review, we attempted to explain about features of SARS-COV-2, particularly focusing on the various aspects of pathogenesis and treatment strategies. Key Messages: We note evidence for the understanding of the precise molecular and cellular mechanisms of SARS-CoV-2 pathogenesis, which can help design the appropriate drug or vaccine. Additionally, and importantly, we reported the updated issues associated with the history and development of treatment strategies such as, drugs, vaccines, and other medications that have been approved or under consideration in clinics and markets worldwide.

2021 ◽  
Vol 10 (20) ◽  
pp. 4783
Willemke Stilma ◽  
David M. P. van Meenen ◽  
Christel M. A. Valk ◽  
Hendrik de Bruin ◽  
Frederique Paulus ◽  

We describe the incidence and practice of prone positioning and determined the association of use of prone positioning with outcomes in invasively ventilated patients with acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19) in a national, multicenter observational study, performed at 22 intensive care units in the Netherlands. Patients were categorized into 4 groups, based on indication for and actual use of prone positioning. The primary outcome was 28-day mortality. Secondary endpoints were 90-day mortality, and ICU and hospital length of stay. In 734 patients, prone positioning was indicated in 60%—the incidence of prone positioning was higher in patients with an indication than in patients without an indication for prone positioning (77 vs. 48%, p = 0.001). Patients were left in the prone position for median 15.0 (10.5–21.0) hours per full calendar day—the duration was longer in patients with an indication than in patients without an indication for prone positioning (16.0 (11.0–23.0) vs. 14.0 (10.0–19.0) hours, p < 0.001). Ventilator settings and ventilation parameters were not different between the four groups, except for FiO2 which was higher in patients having an indication for and actually receiving prone positioning. Our data showed no difference in mortality at day 28 between the 4 groups (HR no indication, no prone vs. no indication, prone vs. indication, no prone vs. indication, prone: 1.05 (0.76–1.45) vs. 0.88 (0.62–1.26) vs. 1.15 (0.80–1.54) vs. 0.96 (0.73–1.26) (p = 0.08)). Factors associated with the use of prone positioning were ARDS severity and FiO2. The findings of this study are that prone positioning is often used in COVID-19 patients, even in patients that have no indication for this intervention. Sessions of prone positioning lasted long. Use of prone positioning may affect outcomes.

2021 ◽  
Vol 9 ◽  
Joseph Alge ◽  
Kristin Dolan ◽  
Joseph Angelo ◽  
Sameer Thadani ◽  
Manpreet Virk ◽  

Acute Kidney Injury (AKI) is an independent risk factor for mortality in hospitalized patients. AKI syndrome leads to fluid overload, electrolyte and acid-base disturbances, immunoparalysis, and propagates multiple organ dysfunction through organ “crosstalk”. Preclinical models suggest AKI causes acute lung injury (ALI), and conversely, mechanical ventilation and ALI cause AKI. In the clinical setting, respiratory complications are a key driver of increased mortality in patients with AKI, highlighting the bidirectional relationship. This article highlights the challenging and complex interactions between the lung and kidney in critically ill patients with AKI and acute respiratory distress syndrome (ARDS) and global implications of AKI. We discuss disease-specific molecular mediators and inflammatory pathways involved in organ crosstalk in the AKI-ARDS construct, and highlight the reciprocal hemodynamic effects of elevated pulmonary vascular resistance and central venous pressure (CVP) leading to renal hypoperfusion and pulmonary edema associated with fluid overload and increased right ventricular afterload. Finally, we discuss the notion of different ARDS “phenotypes” and the response to fluid overload, suggesting differential organ crosstalk in specific pathological states. While the directionality of effect remains challenging to distinguish at the bedside due to lag in diagnosis with conventional renal function markers and lack of tangible damage markers, this review provides a paradigm for understanding kidney-lung interactions in the critically ill patient.

Sign in / Sign up

Export Citation Format

Share Document