scholarly journals The Spawning Migration of Delta Smelt in the Upper San Francisco Estuary

Author(s):  
Ted Sommer ◽  
◽  
Francine Mejia ◽  
Matthew Nobriga ◽  
Frederick Feyrer ◽  
...  
Author(s):  
Edward Gross ◽  
Josh Korman ◽  
Lenny Grimaldo ◽  
Michael MacWilliams ◽  
Aaron Bever ◽  
...  

Delta Smelt, Hypomesus transpacificus, is an endangered pelagic fish native to the San Francisco Estuary. The distribution of Delta Smelt in the estuary shifts landward from low-salinity habitat to freshwater habitat before spawning. This spawning migration often coincides with the first substantial freshwater inflow to the estuary during winter. To accomplish this landward shift in distribution, Delta Smelt are believed to use the tides by swimming to faster-moving currents during flood tides and then repositioning themselves to slower-moving currents to reduce seaward movement on ebb tides. Studies have hypothesized that the swimming behavior of Delta Smelt during this period is influenced by environmental conditions such as salinity and turbidity. The details of these swimming behaviors—including the extent to which flows, salinity, and turbidity affect behaviors and distributions—are uncertain. The spawning migration is of management interest because an increase in observed counts of Delta Smelt at the South Delta water-export facilities has coincided roughly with the spawning migration in many years. In this study, we investigated a range of hypothesized swimming behaviors using a three-dimensional particle-tracking model for water year 2002 during the spawning migration, and compared the predicted distributions of Delta Smelt to distributions inferred from catch data. Our goal was to improve understanding of the influence of Delta Smelt swimming on distribution, and, ultimately, to develop a modeling tool to help management agencies identify conditions associated with entrainment losses. Predictions of Delta Smelt distributions and entrainment varied greatly among behaviors. Without swimming, Delta Smelt would be rapidly transported seaward of Suisun Bay, while continuous tidal migration would move them deep into the interior Delta. These behaviors and a simple turbidity-driven behavior model predicted distributions inconsistent with observations, while more complex behavior rules allowed improved predictions.


Author(s):  
Ted Sommer ◽  
◽  
Francine Mejia ◽  
Matt Nobriga ◽  
Lenny Grimaldo ◽  
...  

Author(s):  
Edward Gross ◽  
Josh Korman ◽  
Lenny Grimaldo ◽  
Michael MacWilliams ◽  
Aaron Bever ◽  
...  

Delta Smelt, Hypomesus transpacificus, is an endangered pelagic fish native to the San Francisco Estuary. The distribution of Delta Smelt in the estuary shifts landward from low-salinity habitat to freshwater habitat before spawning. This spawning migration often coincides with the first substantial freshwater inflow to the estuary during winter. To accomplish this landward shift in distribution, Delta Smelt are believed to use the tides by swimming to faster-moving currents during flood tides and then repositioning themselves to slower-moving currents to reduce seaward movement on ebb tides. Studies have hypothesized that the swimming behavior of Delta Smelt during this period is influenced by environmental conditions such as salinity and turbidity. The details of these swimming behaviors—including the extent to which flows, salinity, and turbidity affect behaviors and distributions—are uncertain. The spawning migration is of management interest because an increase in observed counts of Delta Smelt at the South Delta water-export facilities has coincided roughly with the spawning migration in many years. In this study, we investigated a range of hypothesized swimming behaviors using a three-dimensional particle-tracking model for water year 2002 during the spawning migration, and compared the predicted distributions of Delta Smelt to distributions inferred from catch data. Our goal was to improve understanding of the influence of Delta Smelt swimming on distribution, and, ultimately, to develop a modeling tool to help management agencies identify conditions associated with entrainment losses. Predictions of Delta Smelt distributions and entrainment varied greatly among behaviors. Without swimming, Delta Smelt would be rapidly transported seaward of Suisun Bay, while continuous tidal migration would move them deep into the interior Delta. These behaviors and a simple turbidity-driven behavior model predicted distributions inconsistent with observations, while more complex behavior rules allowed improved predictions.


2021 ◽  
pp. 148-171
Author(s):  
Trishelle L. Tempel ◽  
Timothy D. Malinich ◽  
Jillian Burns ◽  
Arthur Barros ◽  
Christina E. Burdi ◽  
...  

Author(s):  
Brock Huntsman ◽  
◽  
Federick Feyrer ◽  
Matthew Young ◽  
◽  
...  

Resource managers often rely on long-term monitoring surveys to detect trends in biological data. However, no survey gear is 100% efficient, and many sources of bias can be responsible for detecting or not detecting biological trends. The SmeltCam is an imaging apparatus developed as a potential sampling alternative to long-term trawling gear surveys within the San Francisco Estuary, California, to reduce handling stress on sensitive species like the Delta Smelt (Hypomesus transpacificus). Although believed to be a reliable alternative to closed cod-end trawling surveys, no formal test of sampling efficiency has been implemented using the SmeltCam. We used a paired deployment of the SmeltCam and a conventional closed cod-end trawl within the Napa River and San Pablo Bay, a Bayesian binomial N-mixture model, and data simulations to determine the sampling efficiency of both deployed gear types to capture a Delta Smelt surrogate (Northern Anchovy, Engraulis mordax) and to test potential bias in our modeling framework. We found that retention efficiency—a component of detection efficiency that estimates the probability a fish is retained by the gear, conditional on gear contact—was slightly higher using the SmeltCam (mean = 0.58) than the conventional trawl (mean = 0.47, Probability SmeltCam retention efficiency > trawl retention efficiency = 94%). We also found turbidity did not affect the SmeltCam’s retention efficiency, although total fish density during an individual tow improved the trawl’s retention efficiency. Simulations also showed the binomial model was accurate when model assumptions were met. Collectively, our results suggest the SmeltCam to be a reliable alternative to sampling with conventional trawling gear, but future tests are needed to confirm whether the SmeltCam is as reliable when applied to taxa other than Northern Anchovy over a greater range of conditions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mallory E. Bedwell ◽  
Craig Stuart ◽  
Melinda R. Baerwald

Delta smelt are becoming harder and harder to find in the San Francisco Estuary. Some of the suspects in their disappearance are invasive fish species that were introduced from other places into the Estuary. These invasive fish can impact their new habitat by eating the native species that were originally there. However, it is hard to understand what the invasive fish are eating. We found that we can use the DNA in the stomachs of invasive fish to figure out what they have eaten. We caught a common invasive fish in the Estuary, called the Mississippi silverside, and analyzed the DNA from their stomachs to see if it matched delta smelt DNA. We discovered that some Mississippi silversides had delta smelt DNA in their stomachs! We therefore believe that Mississippi silversides are one of the culprits causing the disappearance of delta smelt.


Sign in / Sign up

Export Citation Format

Share Document