Individual-Based Modeling of Delta Smelt Population Dynamics in the Upper San Francisco Estuary: I. Model Description and Baseline Results

2013 ◽  
Vol 142 (5) ◽  
pp. 1238-1259 ◽  
Author(s):  
Kenneth A. Rose ◽  
Wim J. Kimmerer ◽  
Karen P. Edwards ◽  
William A. Bennett
Author(s):  
Ted Sommer ◽  
◽  
Francine Mejia ◽  
Matthew Nobriga ◽  
Frederick Feyrer ◽  
...  

2021 ◽  
pp. 148-171
Author(s):  
Trishelle L. Tempel ◽  
Timothy D. Malinich ◽  
Jillian Burns ◽  
Arthur Barros ◽  
Christina E. Burdi ◽  
...  

Author(s):  
Brock Huntsman ◽  
◽  
Federick Feyrer ◽  
Matthew Young ◽  
◽  
...  

Resource managers often rely on long-term monitoring surveys to detect trends in biological data. However, no survey gear is 100% efficient, and many sources of bias can be responsible for detecting or not detecting biological trends. The SmeltCam is an imaging apparatus developed as a potential sampling alternative to long-term trawling gear surveys within the San Francisco Estuary, California, to reduce handling stress on sensitive species like the Delta Smelt (Hypomesus transpacificus). Although believed to be a reliable alternative to closed cod-end trawling surveys, no formal test of sampling efficiency has been implemented using the SmeltCam. We used a paired deployment of the SmeltCam and a conventional closed cod-end trawl within the Napa River and San Pablo Bay, a Bayesian binomial N-mixture model, and data simulations to determine the sampling efficiency of both deployed gear types to capture a Delta Smelt surrogate (Northern Anchovy, Engraulis mordax) and to test potential bias in our modeling framework. We found that retention efficiency—a component of detection efficiency that estimates the probability a fish is retained by the gear, conditional on gear contact—was slightly higher using the SmeltCam (mean = 0.58) than the conventional trawl (mean = 0.47, Probability SmeltCam retention efficiency > trawl retention efficiency = 94%). We also found turbidity did not affect the SmeltCam’s retention efficiency, although total fish density during an individual tow improved the trawl’s retention efficiency. Simulations also showed the binomial model was accurate when model assumptions were met. Collectively, our results suggest the SmeltCam to be a reliable alternative to sampling with conventional trawling gear, but future tests are needed to confirm whether the SmeltCam is as reliable when applied to taxa other than Northern Anchovy over a greater range of conditions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mallory E. Bedwell ◽  
Craig Stuart ◽  
Melinda R. Baerwald

Delta smelt are becoming harder and harder to find in the San Francisco Estuary. Some of the suspects in their disappearance are invasive fish species that were introduced from other places into the Estuary. These invasive fish can impact their new habitat by eating the native species that were originally there. However, it is hard to understand what the invasive fish are eating. We found that we can use the DNA in the stomachs of invasive fish to figure out what they have eaten. We caught a common invasive fish in the Estuary, called the Mississippi silverside, and analyzed the DNA from their stomachs to see if it matched delta smelt DNA. We discovered that some Mississippi silversides had delta smelt DNA in their stomachs! We therefore believe that Mississippi silversides are one of the culprits causing the disappearance of delta smelt.


2021 ◽  
Vol 9 ◽  
Author(s):  
Laura Twardochleb ◽  
Leela Dixit ◽  
Mallory Bedwell ◽  
Brittany Davis ◽  
Jared Frantzich

The San Francisco Estuary is home to an important endangered fish called delta smelt. Delta smelt eat small, nutritious animals called zooplankton to survive and grow. In turn, zooplankton grow by eating microscopic plant-like organisms called phytoplankton. In the past, the Estuary was full of plankton and delta smelt. Because people have removed water from the Estuary and invasive species now live there, the Estuary no longer has enough plankton to feed delta smelt, making it difficult for them to survive. Scientists have found a unique place in the Estuary, the Yolo Bypass, that has lots of fish food. The problem is that delta smelt do not live in the Yolo Bypass year-round. Scientists are working to solve this problem by sending river or farm water through the Yolo Bypass, to move fish food downstream to feed the hungry delta smelt and other fish species.


Sign in / Sign up

Export Citation Format

Share Document