scholarly journals On the Lyapunov functionals method in the stability problem of Volterra integro-differential equations

Author(s):  
A. S. Andreev ◽  
O. A. Peregudova

In this paper, we consider the problem of applying the method of Lyapunov functionals to investigate the stability of non-linear integro-differential equations, the right-hand side of which is the sum of the components of the instantaneous action and also ones with a finite and infinite delay. The relevance of the problem is the widespread use of such complicated in structure equations in modeling the controllers using integral regulators for mechanical systems, as well as biological, physical and other processes. We develop the Lyapunov functionals method in the direction of revealing the limiting properties of solutions by means of Lyapunov functionals with a semi-definite derivative. We proved the theorems on the quasi-invariance of a positive limit set of bounded solution as well as ones on the asymptotic stability of the zero solution including a uniform one. The results are achieved by constructing a new structure of the topological dynamics of the equations under study. The theorems proved are applied in solving the stability problem of two model systems which are generalizations of a number of known models of natural science and technology.

Author(s):  
Aleksandr S. Andreev ◽  
Olga A. Peregudova

In this paper, we consider the problem of applying the method of Lyapunov functionals to investigate the stability of non-linear integro-differential equations, the right-hand side of which is the sum of the components of the instantaneous action and also ones with a finite and infinite delay. The relevance of the problem is the widespread use of such complicated in structure equations in modeling the controllers using integral regulators for mechanical systems, as well as biological, physical and other processes. We develop the Lyapunov functionals method in the direction of revealing the limiting properties of solutions by means of Lyapunov functionals with a semi-definite derivative. We proved the theorems on the quasi-invariance of a positive limit set of bounded solution as well as ones on the asymptotic stability of the zero solution including a uniform one. The results are achieved by constructing a new structure of the topological dynamics of the equations under study. The theorems proved are applied in solving the stability problem of two model systems which are generalizations of a number of known models of natural science and technology.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Youssef Raffoul ◽  
Habib Rai

AbstractIn [10] the first author used Lyapunov functionals and studied the exponential stability of the zero solution of finite delay Volterra Integro-differential equation. In this paper, we use modified version of the Lyapunov functional that were used in [10] to obtain criterion for the stability of the zero solution of the infinite delay nonlinear Volterra integro-differential equation


Author(s):  
N.V. Pertsev ◽  
B.Yu. Pichugin ◽  
A.N. Pichugina

Some results are presented of application of M-matrices to the study the stability problem of the equilibriums of differential equations used in models of living systems. The models studied are described by differential equations with several delays, including distributed delay, and by high-dimensional systems of differential equations. To study the stability of the equilibriums the linearization method is used. Emerging systems of linear differential equations have a specific structure of the right-hand parts, which allows to effectively use the properties of M-matrices. As examples, the results of studies of models arising in immunology, epidemiology and ecology are presented.


Author(s):  
Süleyman Öğrekçi

In this paper, we consider the stability problem of delay differential equations in the sense of Hyers-Ulam-Rassias. Recently this problem has been solved for bounded intervals, our result extends and improve the literature by obtaining stability in unbounded intervals. An illustrative example is also given to compare these results and visualize the improvement.


2019 ◽  
Vol 75 (1) ◽  
Author(s):  
Yasemin Başcı ◽  
Adil Mısır ◽  
Süleyman Öğrekçi

2019 ◽  
pp. 161-166
Author(s):  
Natalia Sedova

The specifics of the application of Razumikhin technique to the stability analysis of Volterra type integrodifferential equations are considered. The equation can be nonlinear and nonautonomous. We propose new sufficient conditions for uniform asymptotic stability of the zero solution using the phase space of a special construction and constraints on the right side of the equation. In the presented constraints we can analyze stability, relying not only on the behavior of the auxiliary function along the solutions, but also on the properties of the so called limiting equations.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Yue Liu ◽  
Xuejing Meng ◽  
Fuke Wu

So far there are not many results on the stability for stochastic functional differential equations with infinite delay. The main aim of this paper is to establish some new criteria on the stability with general decay rate for stochastic functional differential equations with infinite delay. To illustrate the applications of our theories clearly, this paper also examines a scalar infinite delay stochastic functional differential equations with polynomial coefficients.


Sign in / Sign up

Export Citation Format

Share Document