scholarly journals On space-time properties of solutions for nonlinear evolutionary equations with random initial data

2021 ◽  
Vol 3 (1) ◽  
pp. 11-20
Author(s):  
Kyrill I. Vaninsky

We consider space-time properties of periodic solutions of nonlinear wave equations, nonlinear Schrödinger equations and KdV-type equations with initial data from the support of the Gibbs’ measure. For the wave and Schrödinger equations we establish the best Hölder exponents. We also discuss KdV-type equations which are more difficult due to a presence of the derivative in the nonlinearity.

2006 ◽  
Vol 03 (01) ◽  
pp. 81-141 ◽  
Author(s):  
PIOTR T. CHRUŚCIEL ◽  
SZYMON ŁȨSKI

The study of Einstein equations leads naturally to Cauchy problems with initial data on hypersurfaces which closely resemble hyperboloids in Minkowski space-time, and with initial data with polyhomogeneous asymptotics, that is, with asymptotic expansions in terms of powers of ln r and inverse powers of r. Such expansions also arise in the conformal method for analysing wave equations in odd space-time dimension. In recent work it has been shown that for non-linear wave equations, or for wave maps, polyhomogeneous initial data lead to solutions which are also polyhomogeneous provided that an infinite hierarchy of corner conditions holds. In this paper we show that the result is true regardless of corner conditions.


2022 ◽  
Vol 4 (4) ◽  
pp. 1-14
Author(s):  
Mitia Duerinckx ◽  
◽  

<abstract><p>This note is concerned with the global well-posedness of nonlinear Schrödinger equations in the continuum with spatially homogeneous random initial data.</p></abstract>


2015 ◽  
Vol 12 (02) ◽  
pp. 249-276
Author(s):  
Tomonari Watanabe

We study the global existence and the derivation of decay estimates for nonlinear wave equations with a space-time dependent dissipative term posed in an exterior domain. The linear dissipative effect may vanish in a compact space region and, moreover, the nonlinear terms need not be in a divergence form. In order to establish higher-order energy estimates, we introduce an argument based on a suitable rescaling. The proposed method is useful to control certain derivatives of the dissipation coefficient.


2012 ◽  
Vol 23 (11) ◽  
pp. 1250119 ◽  
Author(s):  
X. CARVAJAL ◽  
P. GAMBOA ◽  
M. PANTHEE

This paper is concerned with the initial value problem (IVP) associated to the coupled system of supercritical nonlinear Schrödinger equations [Formula: see text] where θ1 and θ2 are periodic functions, which has applications in many physical problems, especially in nonlinear optics. We prove that, for given initial data φ, ψ ∈ H1(ℝn), as |ω| → ∞, the solution (uω, vω) of the above IVP converges to the solution (U, V) of the IVP associated to [Formula: see text] with the same initial data, where I(g) is the average of the periodic function g. Moreover, if the solution (U, V) is global and bounded, then we prove that the solution (uω, vω) is also global provided |ω| ≫ 1.


Sign in / Sign up

Export Citation Format

Share Document