Summability of general orthonormal Fourier series

2015 ◽  
Vol 52 (4) ◽  
pp. 511-536
Author(s):  
L. Gogoladze ◽  
V. Tsagareishvili

S. Banach in [1] proved that for any function f ∈ L2(0, 1), f ≁ 0, there exists an ONS (orthonormal system) such that the Fourier series of this function is not summable a.e. by the method (C, α), α > 0. D. Menshov found the conditions which should be satisfied by the Fourier coefficients of the function for the summability a.e. of its Fourier series by the method (C, α), α > 0. In this paper the necessary and sufficient conditions are found which should be satisfied by the ONS functions (φn(x)) so that the Fourier coefficients (by this system) of functions from class Lip 1 or A (absolutely continuous) satisfy the conditions of D. Menshov.

1980 ◽  
Vol 87 (3) ◽  
pp. 383-392
Author(s):  
Alan MacLean

It has long been known, after Wiener (e.g. see (11), vol. 1, p. 108, (5), (8), §5·6)) that a measure μ whose Fourier transform vanishes at infinity is continuous, and generally, that μ is continuous if and only if is small ‘on the average’. Baker (1) has pursued this theme and obtained concise necessary and sufficient conditions for the continuity of μ, again expressed in terms of the rate of decrease of . On the other hand, for continuous μ, Rudin (9) points out the difficulty in obtaining criteria based solely on the asymptotic behaviour of by which one may determine whether μ has a singular component. The object of this paper is to show further that any such criteria must be complicated indeed. We shall show that the absolutely continuous measures on T = [0, 2π) whose Fourier transforms are the most well-behaved (namely, those of the form (1/2π)f(x)dx, where f has an absolutely convergent Fourier series) are such that one may modify their transforms on ‘large’ subsets of Z so that they become the transforms of singular continuous measures. Moreover, the singular continuous measures in question may be chosen so that their Fourier transforms do not vanish at infinity.


2005 ◽  
Vol 12 (1) ◽  
pp. 75-88
Author(s):  
György Gát ◽  
Ushangi Goginava

Abstract We discuss some convergence and divergence properties of twodimensional (Nörlund) logarithmic means of two-dimensional Walsh–Fourier series of functions both in the uniform and in the Lebesgue norm. We give necessary and sufficient conditions for the convergence regarding the modulus of continuity of the function, and also the function space.


2011 ◽  
Vol 43 (3) ◽  
pp. 688-711 ◽  
Author(s):  
Anita Diana Behme

For a given bivariate Lévy process (Ut, Lt)t≥0, distributional properties of the stationary solutions of the stochastic differential equation dVt = Vt-dUt + dLt are analysed. In particular, the expectation and autocorrelation function are obtained in terms of the process (U, L) and in several cases of interest the tail behavior is described. In the case where U has jumps of size −1, necessary and sufficient conditions for the law of the solutions to be (absolutely) continuous are given.


1987 ◽  
Vol 10 (3) ◽  
pp. 443-452 ◽  
Author(s):  
A. fryant ◽  
H. Shankar

We consider Harmonic Functions,Hof several variables. We obtain necessary and sufficient conditions on its Fourier coefficients so thatHis an entire harmonic (that is, has no finite singularities) function; the radius of harmonicity in terms of its Fourier coefficients in caseHis not entire. Further, we obtain, in terms of its Fourier coefficients, the Order and Type growth measures, both in caseHis entire or non-entire.


Author(s):  
Dᾰng Vũ Giang ◽  
Ferenc Móricz

AbstractWe study cosine and sine Fourier transforms defined by F(t):= (2/π) and (t):= (2/π), where f is L1-integrable over[0, ∞]. We also assume than F are locally absolutely continuous over [0, ∞). In particular, this is the case if both f(x) and xf(x) are (L1-integrable over [0, ∞). Motivated by the inversion formulas, we consider the partial integras Sν (f, x):= and ν(f, x):= , the modified partial integrals uν (f, x):= sν(f, x) - F(ν)(sin νx)/x and ũν(f, x):= ν(f, x) + (ν) (cos νx)/x, where ν > 0. We give necessary and sufficient conditions for(L1 [0, ∞)-convergence of uν (f) and ũν (f) as well as for the L1 [0, X]-convergence of sν (f) and ν(f) to f as ν← ∞, where 0 < X < ∞ is fixed. On the other hand, in certain cases we conclude that sν(f) and ν(f) cannot belong to (L1 [0,∞). Conequently, it makes no sense to speak of their (L1 [0, ∞)-convergence as ν ← ∞.As an intermediate tool, we use the Cesàro means of Fourier transforms. Then we prove Tauberian type results and apply Sidon type inequalities in order to obtain Tauberian conditions of Hardy-Karamata kind.We extend these results to the complex Fourier transform defined by G(t):= , where g is L1- integrable over (−∞, ∞).


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Nimete Sh. Berisha ◽  
Faton M. Berisha ◽  
Mikhail K. Potapov ◽  
Marjan Dema

In this paper, we give a characterization of Nikol’skiĭ-Besov type classes of functions, given by integral representations of moduli of smoothness, in terms of series over the moduli of smoothness. Also, necessary and sufficient conditions in terms of monotone or lacunary Fourier coefficients for a function to belong to such a class are given. In order to prove our results, we make use of certain recent reverse Copson-type and Leindler-type inequalities.


2011 ◽  
Vol 43 (03) ◽  
pp. 688-711
Author(s):  
Anita Diana Behme

For a given bivariate Lévy process (U t , L t ) t≥0, distributional properties of the stationary solutions of the stochastic differential equation dV t = V t-dU t + dL t are analysed. In particular, the expectation and autocorrelation function are obtained in terms of the process (U, L) and in several cases of interest the tail behavior is described. In the case where U has jumps of size −1, necessary and sufficient conditions for the law of the solutions to be (absolutely) continuous are given.


Sign in / Sign up

Export Citation Format

Share Document