Perfect Pell and Pell–Lucas numbers

2019 ◽  
Vol 56 (4) ◽  
pp. 381-387
Author(s):  
Jhon J. Bravo ◽  
Florian Luca

Abstract The Pell sequence is given by the recurrence Pn = 2Pn−1 + Pn−2 with initial condition P0 = 0, P1 = 1 and its associated Pell-Lucas sequence is given by the same recurrence relation but with initial condition Q0 = 2, Q1 = 2. Here we show that 6 is the only perfect number appearing in these sequences. This paper continues a previous work that searched for perfect numbers in the Fibonacci and Lucas sequences.

2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


2015 ◽  
Vol 11 (04) ◽  
pp. 1259-1274 ◽  
Author(s):  
Jhon J. Bravo ◽  
Pranabesh Das ◽  
Sergio Guzmán ◽  
Shanta Laishram

In this paper, we consider the usual Pell and Pell–Lucas sequences. The Pell sequence [Formula: see text] is given by the recurrence un = 2un-1 + un-2 with initial condition u0 = 0, u1 = 1 and its associated Pell–Lucas sequence [Formula: see text] is given by the recurrence vn = 2vn-1 + vn-2 with initial condition v0 = 2, v1 = 2. Let n, d, k, y, m be positive integers with m ≥ 2, y ≥ 2 and gcd (n, d) = 1. We prove that the only solutions of the Diophantine equation unun+d⋯un+(k-1)d = ym are given by u7 = 132 and u1u7 = 132 and the equation vnvn+d⋯vn+(k-1)d = ym has no solution. In fact, we prove a more general result.


Author(s):  
Musraini M Musraini M ◽  
Rustam Efendi ◽  
Rolan Pane ◽  
Endang Lily

Barisan Fibonacci dan Lucas telah digeneralisasi dalam banyak cara, beberapa dengan mempertahankan kondisi awal, dan lainnya dengan mempertahankan relasi rekurensi. Makalah ini menyajikan sebuah generalisasi baru barisan Fibonacci-Lucas yang didefinisikan oleh relasi rekurensi B_n=B_(n-1)+B_(n-2),n≥2 , B_0=2b,B_1=s dengan b dan s bilangan bulat  tak negatif. Selanjutnya, beberapa identitas dihasilkan dan diturunkan menggunakan formula Binet dan metode sederhana lainnya. Juga dibahas beberapa identitas dalam bentuk determinan.   The Fibonacci and Lucas sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this paper, a new generalization of Fibonacci-Lucas sequence is introduced and defined by the recurrence relation B_n=B_(n-1)+B_(n-2),n≥2, with ,  B_0=2b,B_1=s                          where b and s are non negative integers. Further, some identities are generated and derived by Binet’s formula and other simple methods. Also some determinant identities are discussed.


2009 ◽  
Vol 93 (528) ◽  
pp. 404-409
Author(s):  
Peter Shiu

A perfect number is a number which is the sum of all its divisors except itself, the smallest such number being 6. By results due to Euclid and Euler, all the even perfect numbers are of the form 2P-1(2p - 1) where p and 2p - 1 are primes; the latter one is called a Mersenne prime. Whether there are infinitely many Mersenne primes is a notoriously difficult problem, as is the problem of whether there is an odd perfect number.


2021 ◽  
Vol 29 (1) ◽  
pp. 17-36
Author(s):  
Dorin Andrica ◽  
Ovidiu Bagdasar ◽  
George Cătălin Ţurcaş

Abstract In this paper we introduce the functions which count the number of generalized Lucas and Pell-Lucas sequence terms not exceeding a given value x and, under certain conditions, we derive exact formulae (Theorems 3 and 4) and establish asymptotic limits for them (Theorem 6). We formulate necessary and sufficient arithmetic conditions which can identify the terms of a-Fibonacci and a-Lucas sequences. Finally, using a deep theorem of Siegel, we show that the aforementioned sequences contain only finitely many perfect powers. During the process we also discover some novel integer sequences.


1975 ◽  
Vol 18 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Charles R. Wall

A divisor d of a positive integer n is a unitary divisor if d and n/d are relatively prime. An integer is said to be unitary perfect if it equals the sum of its proper unitary divisors. Subbarao and Warren [2] gave the first four unitary perfect numbers: 6, 60, 90 and 87360. In 1969,1 reported [3] thatis also unitary perfect. The purpose of this paper is to show that this last number, which for brevity we denote by W, is indeed the next unitary perfect number after 87360.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1047
Author(s):  
Pavel Trojovský ◽  
Štěpán Hubálovský

Let k ≥ 1 be an integer and denote ( F k , n ) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F k , n = k F k , n − 1 + F k , n − 2 , with initial conditions F k , 0 = 0 and F k , 1 = 1 . In the same way, the k-Lucas sequence ( L k , n ) n is defined by satisfying the same recursive relation with initial values L k , 0 = 2 and L k , 1 = k . The sequences ( F k , n ) n ≥ 0 and ( L k , n ) n ≥ 0 were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F k , n 2 + F k , n + 1 2 = F k , 2 n + 1 and F k , n + 1 2 − F k , n − 1 2 = k F k , 2 n , for all k ≥ 1 and n ≥ 0 . In this paper, we shall prove that if k > 1 and F k , n s + F k , n + 1 s ∈ ( F k , m ) m ≥ 1 for infinitely many positive integers n, then s = 2 . Similarly, that if F k , n + 1 s − F k , n − 1 s ∈ ( k F k , m ) m ≥ 1 holds for infinitely many positive integers n, then s = 1 or s = 2 . This generalizes a Marques and Togbé result related to the case k = 1 . Furthermore, we shall solve the Diophantine equations F k , n = L k , m , F k , n = F n , k and L k , n = L n , k .


2007 ◽  
Vol 91 (521) ◽  
pp. 216-226 ◽  
Author(s):  
Barry Lewis

This article sets out to explore some of the connections between two seemingly distinct mathematical objects: trigonometric functions and the integer sequences composed of the Fibonacci and Lucas numbers. It establishes that elements of Fibonacci/Lucas sequences obey identities that are closely related to traditional trigonometric identities. It then exploits this relationship by converting existing trigonometric results into corresponding Fibonacci/Lucas results. Along the way it uses mathematical tools that are not usually associated with either of these objects.


2020 ◽  
Vol 26 (4) ◽  
pp. 164-172
Author(s):  
Kunle Adegoke ◽  
◽  
Adenike Olatinwo ◽  
Winning Oyekanmi ◽  
◽  
...  

Only one three-term recurrence relation, namely, W_{r}=2W_{r-1}-W_{r-4}, is known for the generalized Tribonacci numbers, W_r, r\in Z, defined by W_{r}=W_{r-1}+W_{r-2}+W_{r-3} and W_{-r}=W_{-r+3}-W_{-r+2}-W_{-r+1}, where W_0, W_1 and W_2 are given, arbitrary integers, not all zero. Also, only one four-term addition formula is known for these numbers, which is W_{r + s} = T_{s - 1} W_{r - 1} + (T_{s - 1} + T_{s-2} )W_r + T_s W_{r + 1}, where ({T_r})_{r\in Z} is the Tribonacci sequence, a special case of the generalized Tribonacci sequence, with W_0 = T_0 = 0 and W_1 = W_2 = T_1 = T_2 = 1. In this paper we discover three new three-term recurrence relations and two identities from which a plethora of new addition formulas for the generalized Tribonacci numbers may be discovered. We obtain a simple relation connecting the Tribonacci numbers and the Tribonacci–Lucas numbers. Finally, we derive quadratic and cubic recurrence relations for the generalized Tribonacci numbers.


10.37236/5698 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Panupong Vichitkunakorn

The $A_\infty$ T-system, also called the octahedron recurrence, is a dynamical recurrence relation. It can be realized as mutation in a coefficient-free cluster algebra (Kedem 2008, Di Francesco and Kedem 2009). We define T-systems with principal coefficients from cluster algebra aspect, and give combinatorial solutions with respect to any valid initial condition in terms of partition functions of perfect matchings, non-intersecting paths and networks. This also provides a solution to other systems with various choices of coefficients on T-systems including Speyer's octahedron recurrence (Speyer 2007), generalized lambda-determinants (Di Francesco 2013) and (higher) pentagram maps (Schwartz 1992, Ovsienko et al. 2010, Glick 2011, Gekhtman et al. 2016).


Sign in / Sign up

Export Citation Format

Share Document