Sebuah Generalisasi Baru Barisan Fibonacci-Lucas

Author(s):  
Musraini M Musraini M ◽  
Rustam Efendi ◽  
Rolan Pane ◽  
Endang Lily

Barisan Fibonacci dan Lucas telah digeneralisasi dalam banyak cara, beberapa dengan mempertahankan kondisi awal, dan lainnya dengan mempertahankan relasi rekurensi. Makalah ini menyajikan sebuah generalisasi baru barisan Fibonacci-Lucas yang didefinisikan oleh relasi rekurensi B_n=B_(n-1)+B_(n-2),n≥2 , B_0=2b,B_1=s dengan b dan s bilangan bulat  tak negatif. Selanjutnya, beberapa identitas dihasilkan dan diturunkan menggunakan formula Binet dan metode sederhana lainnya. Juga dibahas beberapa identitas dalam bentuk determinan.   The Fibonacci and Lucas sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this paper, a new generalization of Fibonacci-Lucas sequence is introduced and defined by the recurrence relation B_n=B_(n-1)+B_(n-2),n≥2, with ,  B_0=2b,B_1=s                          where b and s are non negative integers. Further, some identities are generated and derived by Binet’s formula and other simple methods. Also some determinant identities are discussed.

2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1047
Author(s):  
Pavel Trojovský ◽  
Štěpán Hubálovský

Let k ≥ 1 be an integer and denote ( F k , n ) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F k , n = k F k , n − 1 + F k , n − 2 , with initial conditions F k , 0 = 0 and F k , 1 = 1 . In the same way, the k-Lucas sequence ( L k , n ) n is defined by satisfying the same recursive relation with initial values L k , 0 = 2 and L k , 1 = k . The sequences ( F k , n ) n ≥ 0 and ( L k , n ) n ≥ 0 were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F k , n 2 + F k , n + 1 2 = F k , 2 n + 1 and F k , n + 1 2 − F k , n − 1 2 = k F k , 2 n , for all k ≥ 1 and n ≥ 0 . In this paper, we shall prove that if k > 1 and F k , n s + F k , n + 1 s ∈ ( F k , m ) m ≥ 1 for infinitely many positive integers n, then s = 2 . Similarly, that if F k , n + 1 s − F k , n − 1 s ∈ ( k F k , m ) m ≥ 1 holds for infinitely many positive integers n, then s = 1 or s = 2 . This generalizes a Marques and Togbé result related to the case k = 1 . Furthermore, we shall solve the Diophantine equations F k , n = L k , m , F k , n = F n , k and L k , n = L n , k .


Author(s):  
Sukran Uygun ◽  
Evans Owusu

In this study, we bring into light a new generalization of the Jacobsthal Lucas numbers, which shall also be called the bi-periodic Jacobsthal Lucas sequence as   with initial conditions $$\ \hat{c}_{0}=2,\ \hat{c}_{1}=a.$$ The Binet formula as well as the generating function for this sequence are given. The convergence property of the consecutive terms of this sequence is examined after which the well known Cassini, Catalan and the D'ocagne identities as well as some related summation formulas are also given.


10.37236/1472 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
E. Pergola ◽  
R. Pinzani

An elevated Schröder path is a lattice path that uses the steps $(1,1)$, $(1,-1)$, and $(2,0)$, that begins and ends on the $x$-axis, and that remains strictly above the $x$-axis otherwise. The total area of elevated Schröder paths of length $2n+2$ satisfies the recurrence $f_{n+1}=6f_n-f_{n-1}$, $n \geq 2$, with the initial conditions $f_0=1$, $f_1=7$. A combinatorial interpretation of this recurrence is given, by first introducing sets of unrestricted paths whose cardinality also satisfies the recurrence relation and then establishing a bijection between the set of these paths and the set of triangles constituting the total area of elevated Schröder paths.


Author(s):  
Saida Lagheliel ◽  
Abdelhakim Chillali ◽  
Ahmed Ait Mokhtar

In this paper, we present a new encryption scheme using generalization k-Fibonacci-like sequence, we code the points of an elliptic curve with the terms of a sequence of k-Fibonacci-like using of Fibonacci sequence and we call it as k-Fibonacci like sequence [Formula: see text] defined by the recurrence relation: [Formula: see text] and we present some relation among k-Fibonacci like sequence, k-Fibonacci sequence and k-Lucas sequence. After that, we give application of elliptic curves in cryptography using k-Fibonacci like sequence.


2013 ◽  
Vol 97 (540) ◽  
pp. 461-464
Author(s):  
Jawad Sadek ◽  
Russell Euler

Although it is an old one, the fascinating world of Fibonnaci numbers and Lucas numbers continues to provide rich areas of investigation for professional and amateur mathematicians. We revisit divisibility properties for t0hose numbers along with the closely related Pell numbers and Pell-Lucas numbers by providing a unified approach for our investigation.For non-negative integers n, the recurrence relation defined bywith initial conditionscan be used to study the Pell (Pn), Fibonacci (Fn), Lucas (Ln), and Pell-Lucas (Qn) numbers in a unified way. In particular, if a = 0, b = 1 and c = 1, then (1) defines the Fibonacci numbers xn = Fn. If a = 2, b = 1 and c = 1, then xn = Ln. If a = 0, b = 1 and c = 2, then xn = Pn. If a =b = c = 2, then xn = Qn [1].


2019 ◽  
Vol 56 (4) ◽  
pp. 381-387
Author(s):  
Jhon J. Bravo ◽  
Florian Luca

Abstract The Pell sequence is given by the recurrence Pn = 2Pn−1 + Pn−2 with initial condition P0 = 0, P1 = 1 and its associated Pell-Lucas sequence is given by the same recurrence relation but with initial condition Q0 = 2, Q1 = 2. Here we show that 6 is the only perfect number appearing in these sequences. This paper continues a previous work that searched for perfect numbers in the Fibonacci and Lucas sequences.


2016 ◽  
Vol 5 (1) ◽  
pp. 29-36
Author(s):  
Sujata Swain ◽  
Chidananda Pratihary ◽  
Prasanta Kumar Ray

It is well known that, a recursive relation for the sequence  is an equation that relates  to certain of its preceding terms . Initial conditions for the sequence  are explicitly given values for a finite number of the terms of the sequence. The recurrence relation is useful in certain counting problems like Fibonacci numbers, Lucas numbers, balancing numbers, Lucas-balancing numbers etc. In this study, we use the recurrence relations for both balancing and Lucas-balancing numbers and examine their application to cryptography.


Sign in / Sign up

Export Citation Format

Share Document