Elucidation of Feeding-Related Neuronal Networks Involved in the Regulation of the Hypophysiotropic Thyrotropin-Releasing Hormone- and Corticotropin-Releasing Hormone-Synthesizing Neurons in the Rat

2008 ◽  
Vol 2 (3) ◽  
pp. 475-483
Author(s):  
Gábor Wittmann
1993 ◽  
Vol 128 (6) ◽  
pp. 485-492 ◽  
Author(s):  
Sandra Ceccatelli ◽  
Catello Orazzo

Using in situ hybridization we have studied the effects of different types of stressors, such as ether, immobilization, cold and swimming, on the expression of several peptide messenger ribonucleic acids (mRNAs) in the hypothalamic paraventricular nucleus of adult male rats. Paraventricular nucleus sections were hybridized using synthetic oligonucleotide probes complementary to mRNA for corticotropin-releasing hormone, neurotensin, enkephalin and thyrotropin-releasing hormone. A clear upregulation of neurotensin mRNA was seen after ether and, to a lesser extent, after immobilization stress, whereas after the two other stressors neurotensin mRNA was undetectable, as in control rats. An increase in enkephalin mRNA was observed in a selective region of the dorsal part of the medioparvocellular subdivision of the paraventricular nucleus only after ether and immobilization stress. No significant changes were seen in corticotropin-releasing hormone and thyrotropin-releasing hormone mRNA levels in any of the experimental paradigms. The present results show selective changes for various peptide mRNAs in the paraventricular nucleus after various types of stress. Significant effects could be demonstrated only on neurotensin and enkephalin mRNA after ether and immobilization stress. This suggests that adaptive changes in the rate of synthesis, processing and transport of the peptide may develop over a longer period of time.


Sign in / Sign up

Export Citation Format

Share Document